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ABSTRACT

The new generation of satellites leads to the arrival of very high-resolution images which offer a new quality of detailed
information about the Earth’s surface. However, the exploitation of such data becomes more complicated and less efficient
as a consequence of the great heterogeneity of the objects displayed. In this paper, we address the problem of edge-
preserving smoothing of high-resolution satellite images. We introduce a novel approach as a preprocessing step for
feature extraction and/or image segmentation. The method is derived from the multifractal formalism proposed for image
compression. This process consists in smoothing heterogeneous areas while preserving the main edges of the image.
It is performed in 2 steps: 1) a multifractal decomposition scheme allows to extract the most informative subset of the
image, which consists essentially in the edges of the objects; 2) a propagation scheme performed over this subset allows to
reconstruct an approximation of the original image with a more uniform distribution of luminance. The strategy we adopt

is described in the following and some results are presented for Spot acquisitions with spatial resoRgtigr26fm?.

1 INTRODUCTION This paper introduces a new approach to edge-preserving
smoothing of HR images as a preprocessing step for fea-
ture extraction and/or image segmentation. The problem

In the latest years, the improvement of the technology fofan be related with the idea of resolution reduction: the re-

observing the Earth from the space has led to a new clagﬁ'ned_ tgcr}qique should enat()jl_e to pr(;setr)ve tge f_eatu:cei of
of images with very high spatial resolution. New satellite€ 0riginal image corresponding to the boundaries of the

sensors are getting closer to the spatial requirements, Witf?bjeCt_S while homogeneizing th_e' other parts (non-nges)
for example, resolutions d&f.5m (Spot),1m (Ikonos) or ofthe image. Recently, Laporterleep:_aret al.(Laporterie-
even0.7 m (QuickBird). High resolution (HR) imagery of- Djean et al., 2003) proposed a multiscale method for pre-

fers a new quality of detailed information about the prop-S€9menting HR images. The algorithm consists in per-

erties of the Earth’s surface together with their geographtom?ing a non-exact_reconstru_ction: it decomposes af‘d
ical relationships. Consequently, this has given rise to artially reconstructs images using morphological pyramids

growing interest on image processing tools and their apt- at enable to extract details wich regard their structures
plication on this kind of images (Mather, 1995). Smaller'Vithin the image.

and sma_lllerobjects (such as hou_se plots, streets....), as WElLe in (Laporterie-Djean et al., 2003), we address this
as precise contours of larger objects (such as field Stru%roblem with a method deriveci from data compression.

tures) are now available, automatic methods for extract e use the multifractal approach introduced in (Turiel and

ing these objects are of great interest. However, due t oy X X )
the fact that HR images show great heterogeneity, star?—arga’ 2000) as a resolution-reducing device. Like many

. . ; . . Image processing techniques, it makes use of the image
dard technigues for analyzing, segmenting and CIaSSIfyIn%dge information that is contained in the image gradient
the data become less and less efficient. When the res )

lution increases, the spectral within-field variability also%UCh an approach is ideal, as it assumes that objects can

increases, which can affect the accuracy of further classifil?e reconstructed from their boundary information (Turiel
. ' : -y e and del Pozo, 2002). Moreover, it constitutes a multiscale
cation or segmentation schemes (Schiewe, 2002): images h which i I ized in the b
contain more complicated and detailed local textures; chafProach which is wet recognize to attain t. e best per
acteristic objects of the images (fields, buildings ri’vers)form"Jlnce In processing purposes over satellite data, like
) 9 , bulidings, Image fusion and image merging (Yocki, 1995). Even on

are no more homogeneous. Thus, classical approachgs

cannot produce satisfactory results because they ma |n-Single scene, different scales of analysis are needed, de-
P y Yy may .Rending on the homogenity of the objects under consider-
duce simultaneously under- and over-segmentation withi

X : ; ation and on the desired final application. The process we
a single scene, depending on the heterogeneity of the COR- 21V propose is done in two steps:
sidered objects, that confuse the global information and y prop bs:
prevent further analysis. Generally several preprocessing
steps may be required before such methods can be ap-e First, meaningful subsets of the original image, which

plied (Schowengerdt, 1997). mainly consists in its boundaries, are extracted using



note/ an image and/T its spatial derivative. We then de-
fine a measurg through its densitylu(x) = dx |VI|(x),
so that the measure of a bd,.(x) of radiusr centered
around the poink is given by:

§(Bo(x)) = /B LI, 1)

Here|VI| denotes the modulus of the gradiénf. This
measure gives an idea of the local variability of the graylevel
values around the poist. It was observed that for a large
class of natural images, such a measure is multifractal (Turiel
and Parga, 2000).e. the following relation holds:

By (x)) ~ alx) 6. )

All the scale dependance in eq. (2) is provided by the term
: : -z r2th(*) where the exponerit(x) depends on the partic-

Figure 1: High-resolutioSpotimage @0x 20 m per pixel)  ular point considered. This exponent is calkdgularity

acquired in the Near Infrared channel. In this scene, w&xponentand quantifies the multifractal behaviour of the

can recognize some fields, roads and also poorly delimiteBhesureu. The second step of the approach regards the es-
areas which correspond to cities. timation of these local exponents. This is done through a

wavelet projectionu (Daubechies, 1992) of the measure,
for which the same kind of relation as eq. (2) holds in a
a multifractal decomposition scheme. continuous framework, so that the exponelts) can be
: . . easily retrieved. The reader is refered to (Turiel and Parga,
¢ Secpnd, an universal propagation kernel is used t‘%000) for a full description of the method. By this way,
partially reconstrupt typical Obj_e‘_:t shapes from theeach pixelk of the image can be assigned a feature which
values of the gradient of the original image over the . e
previous subset, measures the Iocal'degreg of regularity of the signal
at this point. The singularity exponents computed on the
Spot image of the Fig. 1 are represented in the Fig. 2. We
The paper is organized as follows. In section 2, we reviewsee that the lowest values of singularity are mainly con-
the multifractal approach for extracting the meaningful encentrated near the boundaries of the objects of the image
tities in the images. In section 3, we introduce the methodlarge culture fields in the middle part, roads in the lower
for reconstructing the images. We show that this methodeft part). Some of them are also visible inside the culture
provides good results on Spot images with spatial resolufields, as they are not completely flatly illuminated, and in
tion of 20 x 20 m? (see Fig. 1) and that it could be applied city areas (upper right part) that are rather heterogeneous.
to any kind of data. We also consider an alternative Ver-— e
sion of this method. As a conclusion, we will discuss the
advantages of our methodology.

2 THE MULTIFRACTAL DECOMPOSITION AND
THE MSM

Multifractality is a property of turbulent-like systems which
is generally reported on intensive, scalar variables of chaot;
structure (Frisch, 1995). However, methods based on thig iy 4
approach have also shown to produce meaningful results iRigure 2: Left representatlon of the singularity exponents
the context of real world images where irregular graylevekcomputed on the image of the Fig. 1 in the ran@e55]
transitions are analyzed (Turiel and Parga, 2000). Natusf graylevel values; the brighter the pixel, the greater the
ral images can be characterized by their singulariiies, singularity exponent a this pointRight: corresponding
the set of pixels over which the most drastic changes imlistribution of the singularity exponent; the range of values
graylevel value occur. In (Turiel and Parga, 2000), Turielobtained i§—0.80, 0.81].

and Parga introduced a novel technique based on multifrac-

tal formalism to analyze these singularities. We develop i
the following the basis of this technique.

rlI'he image can then be hierarchically decomposed in dif-
ferent subset$}, gathering the pixels of similar features:

In this app_rgach, the points in a given image are hier_archi- F, = {x | h(x) ~ h}. 3)
cally classified according to the strength of the transtion of

the image around them. The first step concerns the defiAle know, from the multifractal theory, that each one of
nition of an appropriatenultifractal measure Let us de- these subsets is fractale. it exhibits the same geomet-



rical structure at different scales. In particular, the aris-
ing decomposition allows isolating a meaningful fractal
component, the so-called MSMMpst Singular Compo-
nent denotedF,.) associated with the strongest singulari-
ties (.e. the lowest - or most negative - exponent, denoted
hso). In Fig. 3, the MSM was computed on the original
image at a rather coarse resolution: the pixels for which
hoo = —0.42 £+ 0.3 were included in the MSM. From in-
formation theory, the MSM can be interpreted as the most
relevant, informative set in the image (Turiel and del Pozo,
2002). In (Grazzini et al., 2002), Grazziet al. have evi-
dencied that this subset, computed on meteorological satel-
lite data, is related with the maxima of some well-defined
local entropy. From multifractal theory, the MSM can be
regarded as eeconstructing manifoldIn (Turiel and del
Pozo, 2002), Turiel and del Pozo have shown that using
only the information contained by the MSM, it is possi-
ble to predict the value of the intensity field at every point.
We describe the algorithm for reconstructing images in the
next section and we show that it can be used as a technique
for edge-preserving smoothing of images.

3 THE RECONSTRUCTED IMAGES

In (Turiel and del Pozo, 2002), Turiel and del Pozo pro-
posed an algorithm supposed to produce a perfect recon-
struction FRI Fully Reconstructed Imayérom the MSM.
The authors introduced a rather simple vectorial keghel
capable to reconstruct the signaffrom the value of its
spatial gradientf] over the MSM. Namely, let us define
the density function, (x) of the subsef’,, which equals
1if x € F, and0 if x ¢ F.. Let also define the gradient
restricted to the same s&f, = V1 6., i.e. the field which
equals the gradient of the original image over the MSM
and is null elsewhere: this will be the only data required
for the reconstruction. The reconstruction formula is then
expressed as:

I(x) = g x Us(x) 4)
wherex denotes the convolution. The reconstruction ker-
nel g is easily represented in Fourier space by:

gif) = if /|f? (5)

where” stands for the Fourier transforfdenotes the fre-
guency and the imaginary unit. The principle is that of a
propagation of the values of the sigrﬁf over the MSM

to the whole image. The full algorithm for reconstruction
is given in (Turiel and del Pozo, 2002).

The multifractal model described above also allows to con-
sider a related concept, that of RMRéduced Multifractal
Image, as it was introduced in (Grazzini et al., 2002). It
consists in propagating, through the same reconstructioRigure 3: Top: MSM (dark pixels) extracted at., =
formula (4), instead ofi,,, another fieldi; so thata more  —0.42 4+ 0.3 from the image of Fig. 1; quantitatively, the
uniform distribution of the luminance in the image is ob- MSM gathers22.29% of the pixels of the imageMiddle:
tained. Namely, the field; is simply built by assigning to  FRI computed with eq. (4) on the field, (PSNR =
every point in the MSM an unitary vector, perpendicular24.93 dB). Bottom: RMI computed with the fieldv,
to the MSM and with the same orientation as the original PSNR = 21.34dB).

gradientVY. Thus, by introducing in eq. (4) this rather

naive vector field, we obtain the RMI. Consequently, the




RMI has the same multifractal exponents (and so, the samaso shows that the method is able to enhance subtle tex-
MSM) as the original image, but, as desired, a more uniture regions, like small culture fields. It is clear that the
form graylevel distribution. In fact, this image ideally at- results are superior to the results of a simple method like
tains the most uniform distribution of graylevels compat-pixel averaging for instance.
ible with the multifractal structure of the original image.
RMI images define smallei.¢., more compressed) codes Now, one of the major advantages of our method of pre-
than FRI images; both images are very similar when th&egmentation is that it is parameterizable. We should no-
original images are uniformly illuminated. tice that the reconstruction algorithm for computing the
FRI defined by the eq. (4) is linear (Turiel and del Pozo,
In Fig. 3, we present the images reconstructed from th€002). It means that, if the reconstructing manifold is
fields v, andvg defined by the MSM previously com- the union of two subsets; U 9, then the FRI, g, re-
puted (see section 2). This approximates the original imeonstructed from this manifold equals the addition of the
age of Fig. 1 with éPeak Signal to Noise Ratid®>SNR)  FRI,, and FR],, reconstructed from each part separately.

of 24.93dB and PSN R = 21.34 dB respectively. Thus, the more singular pixels the reconstructing manifold
gathers, the closer to the original image the FRI is In par-
4 DISCUSSION ticular, when the MSM consists of all the points in the im-

age, eq. (4) becomes a trivial identity and the reconstruc-

. , L tion is perfect. So, we can approximate the original image
From the whole reconstructions displayed in Fig. 3 and the,q ¢0se as desired. We just need to choose the density of

details displayed in Fig. 4, we see that: the manifold used for the reconstructidre. we need to
adjust the range of values accepted for the singularity ex-
e for both reconstructions, there is a high degree of smaeenents of the pixels belonging to the MSM. By this way,
thing in rather homogeneous areas, the degree of smoothing of objects in the image can be con-

) ) trolled. On the Fig. 5, we see that the details of the image
e main edges are preserved, even those ones being regre incorporated in the reconstruction when increasing the
resented by small gray value changes, like inside thythorized number of pixels in the MSM, and this is done

culture fields, gradually, according to their degree of singularity.

e even if it may happen that edges between small areas
are deleted, like for small culture fields, small homo-5 CONCLUSION
geneous regions are generally conserved.

In this paper, we have proposed to perform a pre-segmenta-
The similarity between both reconstructions is mainly duetion of high resolution images prior to any processing. For
to the fact that on this kind of images (namely, land covetthis purpose, we adopt an approach related with data com-
images with rather linear edges induced by culture fieldspression and based on the multifractal analysis of images.
the field vy does not strongly deviate from the fieltl. . The main idea is that of a partial reconstruction process
So, in first approximation, the RMI could be used for pro-0f the images from the extraction of their most important
viding the information about the boundaries. However, théeatures.
corresponding graylevel distributions (Fig. 4) show that: . ) . ) .
The multifractal algorithm is performed in two steps, which
. . _ consist in: first, extracting the most singular subset of the
e the FRI provides a good smoothed version of the origimage ji.e. the set of pixels where strong transitions of the
inal image, with suppression of peaks in the distribu-griginal image occur, and, then, performing a reconstruc-
tion, tion by propagating the graylevel values of the spatial gra-
e the RMI provides a completely different chromatic dienf[ of the image from this subsefc to the other parts. The
distribution. multiscale character of the extraction step allows to retain
the relevant edges, no matter at which scale they happen,
and without significant artifacts. The most singular subset
The RMI represents a different, possible view of the sames mainly composed of pixels belonging to the boundaries
scene, with the same objects and the same geometry gsthe objects in the image. So that, our algorithm to recon-
the FRI, but different distributed illumination of each part. struct images is consistent with classical hypothesis stat-
Namely, the differences between the RMI and the origiing that edges are the most informative parts of the image
nal image are only due to these differences in illumina{(Marr, 1982). The quality of the reconstruction depends
tion. In spite of the advantages of a more compact coden the validity of the hypothesis defining the reconstruc-
as the one associated to the RMI, we finally retain the FRiion kernel and in the accuracy of the edge detection step.
as the convenient edge-preserving smoothing approximat should be also noticed that this method can be used as

tion of the original image: it cleans up noise in the homo-a starting point for a coding scheme, as it retains the most
geneous areas but preserves important structures and alg@aningful features of the image.

preserves the luminance distribution. Besides, the quality

of the approximation of the original image is good for the The reconstruction strategy results in very nicely smoothed
FRI, which is an essential requirement for further processhomogeneous areas while it preserves the main informa-
ing like feature extraction. Close inspection to the imageion contained in the boundaries of objects. It is good at



'::4.:

Figure 4: Details of the reconstructed images and thei|sigure 5: FRI obtained considering different MSM with

graylevel values’ distributionFrom top to bottom: de- varying density in the imagésrom top to bottom: 13.9%

tails of the original Spot image, details of the FRI and theg,dpSN R = 23.51 dB,22.3% andPSNR = 24.93 dB,

RMI, respectively reconstructed with the fieldg andwvy. 32.5% and PSNR = 25.30dB (the PSN R were com-
puted for the whole images). Note that the middle image
is the same as the middle one displayed in Fig. 4
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