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Abstract—Recent advances in the theory of turbulence, with
the introduction of the Microcanonical Multifractal Formalism
has favored the development of new techniques for the analysis of
remotely sensed data, particularly of scalars as SST. In this work
we show that these techniques allow to uncover a fascinating
picture in which many features of global ocean circulation
patterns emerge in a distinct way. Applications include the char-
acterization of transport, estimation of eddy-mediated mixing,
the characterization of the coupling of ENSO perturbation with
the equatorial instabilities and a long etc.

I. INTRODUCTION

The advances in the acquisition of Sea Surface Temperature
(SST) images, with the introduction of new sensors and
merged/interpolated products is giving rise to an unprece-
dented capability for the constant monitoring of oceans at very
different ranges of dynamic scales, synoptically and with very
good sampling rate [1]. Data from passive MicroWave (MW)
sensors are particularly useful, as nowadays Level 2 MW SST
images are produced under almost any weather condition, with
global coverage and daily; their main drawback lies on their
relatively limited resolution.

It is well-known that SST images are composed by coherent
features, which are the result of coherent circulation patterns
[2]. For that reason, since long ago SST images have been
used in order to derive the surface velocity field from them.
However, solving the inverse problem (i.e., determining which
velocity field has lead to the observed temperature patterns)
is extremely complex due to the non-linear interactions in the
flow evolution and also because the temperature distribution
is the result of an accumulated (integrated) time evolution.
Nevertheless, some techniques based on tracking of SST
patterns on sequences of images (the most important one
being Maximum Cross Correlation, MCC) have been applied
to derive sea surface velocity fields, with remarkable results
[3], [4], [5]. The main drawbacks of this methodology lie
on its limited resolution, in the problems caused by data
gaps and in the necessity of properly identifying and tracking
patterns in chaotic and complex signals such as SST. In fact,
the pervading character of oceanic turbulence leads to a very
complex structure in the fluctuation part (i.e., after subtracting
long-rage correlations) of SST field [6], which rends pattern
recognition and tracking very difficult.

The Microcanonical Multifractal Formalism (MMF) [7] is
a new formalism to deal with data obtained under conditions
of turbulence with high Reynolds number. MMF represents
the step from the more classical statistical characterization
of the turbulence (by means of energy spectra, order-two
correlations, etc [8]) to a new geometrical approach, in which
the signal is decomposed in a hierarchy of fractal sets char-
acterizing the different rates of turbulent dissipation - this is
the reason for the name “multifractal”. This decomposition
is performed in a scale-invariant fashion which imitates the
physical process of turbulent cascading (in turbulence, energy
is injected from the largest to the smallest scales as a cascade,
[9], [10], [11]) and so a good spatial resolution of oceanic
structures can be attained [12], [7]. Not only that: it has
been argued [13] that the multifractal structure of a scalar
is preserved by flow advection, what would imply that each
fractal component is at each time instant composed by stream-
lines. This has been checked in [12] by comparing fractal
components and altimetry-derived velocity fields, finding a
good correspondence. Hence, it seems that the multifractal
decomposition allows recognizing the streamlines with the use
of a single SST image.

The presence of data gaps is still a problem in MMF,
although less critical than in pattern-tracking methodologies
as MCC. The effect of gaps is local and so the perturbation
does not extend far ago their locations, although they lead to
artificial boundary currents which circulate around the area
affected by missing data. It is hence convenient to work with
different data types in order to infer the correct streamlines by
comparison, or even trying to obtain signals with few missing
data. This is precisely the case of MW SST, and so we have
performed an study on the capabilities of MMF applied to MW
SST data in order to produce steady tracking of the oceanic
current lines.

II. SINGULARITY ANALYSIS

Let us first start by a small introduction to the MMF tech-
niques, and more particularly to singularity analysis, which
is the fundamental ingredient to perform the multifractal
decomposition. The interested reader can find more details in
[14], [12], [15], [7].



The applicability of MMF relies on the existence of local
scaling exponents (known as singularity exponents). The sin-
gularity exponent of a point is a scale-invariant, dimensionless
measure of the degree of regularity or irregularity of the image
at that location. The obtaining of singularity exponents allows
to detect relevant structures in the flow organization, even
subtle structures with very small amplitude [16]. To obtain the
singularity exponent of a point, the image must be filtered by
means of wavelet projections, in order to reduce the influence
of noise and to provide a controlled continuous interpolation
over some range of scales. A procedure to assign a singularity
exponent to each point in the image is known as a singularity
analysis, and is one of the basic ingredients in MMF.

In our case, singularity analysis is performed by a wavelet
analysis of numerical estimates of the modulus of the gradient.
Let θ(~x) the value of SST at a point ~x of the image; its gradient
will be denoted by ∇θ(~x). Given a wavelet Ψ, we define the
wavelet projection TΨ|∇θ|(~x, r) of its gradient modulus of θ
at the point ~x and with scale r as:

TΨ|∇θ|(~x, r) =
∫

d~y |∇θ(~y)| 1
r2

Ψ
(

~x− ~y

r

)
(1)

The signal θ will have a singularity exponent h(~x) at the
point ~x is the following equality holds:

TΨ|∇θ|(~x, r) = αΨ(~x) rh(~x) + o
(
rh(~x)

)
(2)

where the symbol “o
(
rh(~x)

)
” means a quantity which decays

to zero if divided by rh(~x) when r → 0. If a signal θ
admits singularity exponents at all its points we will say that
this signal is multifractal [14]. The conditions which allow
applying the MMF are a bit more restrictive although rather
technical and not essential for the course of this paper; the
interested reader can find the precise framework in [17], and
the verification of its validity on SST images in [7].

The accuracy and resolution capability in the determination
of the singularity exponents depends on the wavelet used. As
discussed in [18], the wavelets leading to the best results
are positive functions with adjusted tail decay. Notice that
although properly speaking a positive function cannot be a
wavelet (they do not verify the admissibility condition, [19],
[20]), this fact does not prevent their use for singularity
analysis (admissibility is required to represent signals, not to
analyze signals).

The other ingredient in MMF is the presence of a particular
arrangement of singularities in variables dominated by turbu-
lence. When turbulence is well developed, all the variables for
which the stirring by the flow is important enough develop a
multifractal arrangement of singularity exponents [21], [8]. In
those cases, singularity exponents are arranged in accordance
with the multiplicative cascade predicted by the theory [9],
[22], [10]. Besides, for those scalars for which advection
is dominant enough, the singularity exponents are plainly
advected by the flow, at least in a first-order approximation.

For that reason, the singularity exponents on SST images allow
to delineate the instantaneous streamlines of the motion.

For the experiences shown in this paper, we have used a
numerical implementation of the order-1 Lorentzian wavelet
(see [14], [18]). This wavelet is defined by its numerical
weights and has been designed to optimize reconstruction from
the most singular values [23]. The exponents are obtained by
a linear regression of log TΨ|∇θ|(~x, r) vs log r for r = 1 to
r = 8 pixels sampled uniformly in the logarithmic domain.

As discussed in [14], [12], [7], the values that the exper-
imental singularity exponents can take is contained in the
interval (−1, 2), although a narrower range, as (−0.5, 0.5)
usually contains around 99% of the total values. For that
reason, we are more interested in taken this range as the
dynamic range for the variable h(~x), in order to enhance
details. Besides, the smallest values (i.e., those closest to -0.5)
delineate sharp structures, while the greatest values (closest to
0.5) represent smooth behaviors and are associated to areas
without any distinguishable structure. Something which is a
bit surprising when singularity analysis is applied is the large
amount of emerging singular structures (see figures in the
following). In fact, this should be expected as the exponent
h(~x) obtained from equation (2) is a measure of the sharpness
or smoothness of the transition (that is, the speed of the
change) but it is independent of its absolute amplitude (which
is contained in the factor αΨ(~x)). So, singularity analysis
always gives access to all transitions in the data, even the
subtlest ones, and in the case of scalars submitted to turbulence
these transitions must be the response of the scalar to the action
of the flow shear, so they follow the streamlines.

Fig. 1. MW SST image for October 1st, 2005 (cylindric projection).
Temperatures in the color bar are expressed in Celsius degrees.

III. EXAMPLES OF APPLICATION

In Figure 1 we present a typical MW SST image for the
whole globe. Some circulation patterns are obvious by visual
inspection on this image (as the Gulf Stream and Kuroshio
sharp thermal signatures), but over the majority of the areas
temperature appear to change rather smoothly and no pattern is



recognized. On the contrary, singularity analysis of this image,
Figure 2, reveals a complex system of currents, with strong
filamentation, eddy creation and propagating waves.

Fig. 2. Singularity exponents obtained from MW SST images for the whole
globe. Results for October 1st, 2005.

Let us study in detail some specific geographical areas. In
Figure 3 we present a MW SST image for the Gulf Stream
area in the North West Atlantic basin. As mentioned above, the
thermal signature of this western boundary current is plainly
evident in the image, and some close eddies can be guessed.
The presence of these eddies is confirmed after the application
of singularity analysis, see Figure 4. Not only that, but many
filaments spawning from the Gulf Stream and other currents
lines now become evident. Such stirring patterns and filaments
have great impact in biological aspects as for instance primary
production [24].

A different kind of study is posed when analyzing phenom-
ena such as the Tropical Instability Waves (TIW) in the Eastern
Equatorial Pacific; see Figure 5.

Here, the propagation speed of TIW and their evolution
can be evaluated by comparing the singularity exponents at
different days. In addition, several motion modes can be
recognized: observe the double wave front at about -135
degrees in Longitude in August 1st, 2005, which finally
merges, interfering in a constructive way in August 15th. The
resulting patterns are to Kelvin-Helmholtz instabilities, which
are produced in the interface between two horizontal parallel
streams of different velocities and densities; the improved
detection capability furnished by singularity extraction would
allow to improve our underdtanding on TIW generation and
evolution.

The study of TIWs is also important in order to characterize
some of the effects associated to El Niño-Southern Oscillation
(ENSO): it is well-known that the presence of ENSO interferes
with the generation of TIW, which become of less amplitude
and smaller spatial frequency. With this technique, the phe-
nomenon can be studied in greater detail.

Fig. 3. MW SST image for February 1st, 2003 at the Gulf Stream area
(cylindric projection). Temperatures in the color bar are expressed in Celsius
degrees.

Fig. 4. Singularity exponents obtained from MW SST images at the Gulf
Stream area. Results for February 1st, 2003.

IV. CONCLUSION

In this paper, we have seen the potential of the Microcanon-
ical Multifractal Formalism, and particularly of the so-called
singularity analysis, for the study of oceanic processes in a
steady-basis. An essential ingredient to assess these process
is the use of MicroWave Sea Surface Temperature (MW SST)
images as starting data, as this kind of images are less affected
by cloud cover and strong weather conditions.



Fig. 5. Singularity exponents obtained from MW SST images at the
Eastern Equatorial Pacific. Results for August 1st (top), 8th (middle) and
15th (bottom), 2005.

With this approach we can study the filamentation of the
stronger jet currents, as Gulf Stream, the Kuroshio extension,
the Agulhas current, the Malvines current, the Antartic Cir-
cumpolar current, etc. The analysis of the structure of the
main currents has two main implications. First, the geometry
of currents gives information about the way in which the
energy of such currents is propagated towards small scales
(i.e. if the energy is disipated mainly through vortices or
waves), and what is the time sequence of such phenomena.
On the other hand these currents are active parts of the
main oceanic gyres, which in turn are the physical expression
of the mechanisms that control, between others, the global
heat budget in the Earth or the deep water formation. On
the other hand, many mesoscale eddies are revealed, and
the path of their evolution can be tracked; the propagation
and characteristics of equatorial instabilities are also neatly
evidenced. Particularly important is the possibility of precisely
determine the position of oceanic fronts due to their impact
in the three dimensional structure of the oceanic waters. This
later point would be crucial in studying the upwelling zones,
which have a great impact, for instance, in the fisheries.
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