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Abstract—In this study, we show how different spectral chan-
nels of NOAA-AVHRR acquired data can be used to produce
a synthetized signal aimed at helping the characterization of
plumes associated to fire events. The synthetized signal is
computed using a reconstruction formula in the multifractal
microcanonical formalism (herein referred to as MMF). The
MMF is a recent development in the analysis of complex signals,
well adapted to the study of turbulent acquired data, for instance
geophysical fluids. It allows the computation, at each point of the
signal’s domain, of a singularity exponent, characteristic of the
scale behaviour of the signal around that point; singularity expo-
nents provide information about the strengths of the transitions
inside a signal, and they are related to the multifractal hierarchy
associated to structure functions in Fully Developped Turbulence
(FDT). In the MMF, it is possible to reconstruct a turbulent
signal from the manifold of most singular exponents. We make
use of this property by computing supergeometric structures from
a thermal infrared channel in NOAA-AVHRR acquired data,
and we use the signal’s gradient coming from other channels to
reconstruct a signal in which plume pixels are easier to detect.
This methodology is based on the turbulent properties of the
plume accessible from the thermal infrared band; the algorithm
is detailed and applied on a specific example, showing a new
spatially-based method for helping the determination of plume
pixels in NOAA-AVHRR data.

I. INTRODUCTION

The determination of natural or industrial fires and
fire plumes from remotely sensed data is a well
documented area of research [Cahoon et al.1999],
[Chrysoulakis and Cartalis2003], [Chrysoulakis et al.2007],
[Chu et al.1998], [Li et al.2001]. Most fire detection and
plume determination algorithms are basically pixel-based:
they use the grey-levels values of pixels corresponding to a
satellite acquisition over an extended ground area; depending
on the physical properties of the acquired radiations, they
determine appropriate thresholds values and classify the pixels
accordingly. Some of these methods may use spatial content
information (see, for instance [Chrysoulakis et al.2007] but
the majority of algorithms remains pixel-based.

In this paper we want to investigate specific spatial proper-
ties of the 2D signals acquired by NOAA-AVHRR over regions
containing fire plumes. The goal is to find new spatial de-
scriptors that can be incorporated into fire detection algorithm
for better accuracy and less sensitivity to threshold values in
the process of determining plume pixels. More precisely, we
don’t want to perform any type of classical texture analysis
for plume pixels determination and enhancement; instead,
we want to focus of some physical behaviour associated to
atmospheric turbulence, and try to assess these properties from
the NOAA-AVHRR signal. The key observation is that the
turbulent behaviour of plumes corresponding to fire incidents
should be accessible in the channels in which the acquired data
correspond to the spatial distribution of a physical intensive
variable like temperature. For that matter, we rely on signal
processing multiscale analysis techniques powerful enough
to capture the power-law behaviours found in turbulent phe-
nomena [Arneodo et al.1995]. Many hours after an incident,
plumes of different kinds ([Chrysoulakis and Cartalis2003],
section 1) undergo various dispersion dynamics (for instance,
in the case haze-like plumes, dispersion can be related to
dominant winds over the area), and their spatial extension can
become large. Consequently, we expect to find some of the
plume turbulent behaviour in the NOAA-AVHRR acquisitions.

It is reasonnable to assume that the plumes recorded by the
sensors are acquisitions of atmospheric fluids in the regime of
fully developped turbulence (FDT). The acquired plumes can
be dense plumes or haze-like plume, in either case we make
the assumption that the plume belongs to the FDT regime.
For such systems, it is now well known that there exists
a fundamental connection between the multifractal hierarchy
associated to turbulence and the spectrum of singularity expo-
nents observed in the structure functions [Arneodo et al.1995].
We will make use of the microcanonical multifractal for-
malism MMF [Turiel and del Pozo2002] in preference to
statistical formulations of the multifractal hierarchy. In the



microcanonical multifractal formalism (MMF) and in the
statistical formulations as well, singularity exponents play a
fundamental role because of their importance in the description
in the macroscopic features of a system [Arneodo et al.1995].
Moreover, from a physical point of view, the singularity
exponents form the building block of many features associated
to a multiscale description of an acquired geophysical fluid
or aerosol. Satellite sensors have different spatial resolutions,
consequently the determination of multiscale features may
help the matching of turbulent structures between sensors of
different resolutions.

II. THE MICROCANONICAL MULTIFRACTAL FORMALISM

In this section review the key aspects of the MMF,
and the reader is referred, among other references,
to [Turiel and del Pozo2002] for a deeper exposition. Let s be
the signal associated to a given acquisition. We consider that s
is defined over a compact subset Ω ⊂ R2 (corresponding to the
image acquisition plane) and takes real values. To introduce a
variable with stationnary values, we consider the generalized
gradient norm ‖∇s‖ instead of the signal values. We introduce
the following density measure µ:

dµ = ‖∇s‖ dx (1)

i.e. a measure having density ‖∇s‖ w.r.t. to the Lebesgue
measure dx: for any measurable subset A ⊂ Ω, the measure
µ(A) is defined as:

µ(A) =
∫ ∫

A
‖∇s‖(x) dx (2)

The measure µ is multifractal if for any point x ∈ Ω one has:

µ (Br(x)) = α(x) rh(x)+d + o
(
rh(x)+d

)
(r → 0) (3)

where Br(x) stands for the ball of radius r centered at x.
Many geophysical signals of different types are of multifractal
character [Turiel and Parga2000]. The shift d = 2 (space
dimension) is introduced to remove the contribution due to
the integral, hence capturing the behaviour specific to the
function ‖∇s‖. In equation (3), the coefficient h(x), which
is independant of the scale r, is a singularity exponent at
x ∈ Ω. It is the fundamental notion in the MMF. To compute
it accurately, we make use of wavelet techniques on singularity
analysis, as described in [Turiel and Parga2000].

A. Geometric superstructures

The singular exponents computed in the framework of the
MMF are good approximations of the power-law behaviour of
thermodynamic observables in a geophysical turbulent flow.
These exponents define a multifractal hierarchy of geomet-
rical sets (the geometric superstructures) closely related to
the corresponding multifractal hierarchy associated to struc-
ture functions in FDT [Turiel et al.2005b]. We assume that
the spectrum of singularities is bounded, as experimentation
shows. With these hypotheses, there is a lower bound h∞ =

inf{h(x), x ∈ Ω} and a geometric superstructure, the Most
Singular Manifold (MSM), can be defined as follows:

F∞ = {x ∈ Ω | h(x) = h∞}. (4)

The MSM is defined by the points featuring the sharpest
transitions in the signal. In section II-B, it will be associated
with the most informative content in the signal. These two
notions are stongly interrelated. The MSM is made of isolated
clusters of points or disconnected almost-linear features with
Hausdorff dimension up to 1.

B. Reconstructible systems

As the MSM is associated to sharpest continuous transi-
tions, it is natural to derive a universal propagator that would
permit the reconstruction of a whole signal from its values
restricted to the MSM only. The reconstruction consists in
propagating gradient values from the MSM to the whole image
domain. The propagator and the associated reconstruction
formula are defined by the following equation in the Fourier
space [Turiel and del Pozo2002]:

ŝ(f) =
√
−1f · ̂∇|F∞s(f)

‖f‖2
(5)

with:
- f = (fx, fy) is the two-dimensionnal frequency vector.
- The hat symbol ŝ refers to the Fourier transform.
- ∇|F∞s is the signal’s gradient restricted to the MSM.
- The dot symbol · in formula (5) refers to vector dot

product.
The universal propagator, defined in Fourier space by

ĝ(f) =
√
−1f
‖f‖2

. (6)

is a propagator corresponding to the power spectrum of a
translational invariant signal, a well known requirement for
natural images [Turiel and del Pozo2002]. Consequently, the
reconstruction formula acts as a diffusion kernel propagation
of gradient values from the MSM. If the MSM does encode
the sharpest transitions, which correspond to the most informa-
tive content parts, the reconstruction formula should provide a
good reconstruction of the original signal from its MSM. We
will illustrate this in section III.

In NOAA-AVHRR acquisitions, five spectral channels are
available: c1 in the visible range (µm) (0.58-0.68), c2 in the
near infrared range (µm) (0.72-1.10), c3 in the mid infrared
range (µm) (3.55-3.93), c4 in the thermal infrared range (µm)
(10.5-11.3) and c5 in the thermal infrared range (µm) (11.5-
12.5). Since we are interested in the turbulent properties of
the acquired signal, we use the thermal infrared bands of
NOAA-AVHRR data to compute singular exponents and the
MSM (NOAA channel c5); this comes from the fact that in
these bands, the acquired signal is an intensive variable, the
temperature, reflecting the turbulent aspect of the acquisition.
The reconstruction formula 5 consists in propagating gradient
values from the MSM; consequently, the basic idea in this
study consists in propagating gradients coming from some



spectral bands, along the MSM computed in the band in which
the turbulent properties of the signal are accessible. This idea
is developped in the next subsection.

C. A modified reconstruction formula

We use the assumption that the MSM computed in the
thermal infrared band is directly related to the streamlines
of the underlying fluid, so we take this set as the correct
reference on the geophysical fluid flow dynamics. We will
use the signal gradient of a function of channels c2 and c3 to
enhance the discrimination between plumes and others bodies
taking into acount temperature and reflectance information. Let
ϕ(c2, c3) be a function of the pixel’s grey-level values acquired
in spectral bands c2 and c3. We define a synthetized signal p
by propagating ϕ’s gradient vectors from the MSM computed
in channel c5; that is, we use the reconstruction formula (5)
in which the gradient information is replaced by ϕ’s gradient
values ∇ϕ:

p̂(f) =
√
−1f · ̂∇|F∞ϕ(f)

‖f‖2
(7)

which means that the gradient of ϕ is diffused from the set
of strongest transitions on the thermal infrared channel. The
algorithm is then as follows:

(1) Compute the singular exponents of the acquired signal
s using wavelet decomposition in the thermal infrared
band c5.

(2) Derive the MSM F∞ from the singular exponents by
selecting pixels whose exponents is in a given fixed
interval centered around the lowest exponent.

(3) Compute the gradient values ∇ϕ and set to zero these
values outside F∞ to get the singular gradient values
∇|F∞ϕ.

(4) Compute the synthetized signal p̂(f) in Fourier space
using equation (7).

(4) Determine the synthetized signal p in spatial coordi-
nates by use of the inverse Fourier transform.

The resulting synthetized signal p is called a multispectral
reduced signal. In the next section, we show the data used
and some results.

III. EXPERIMENTS

To illustrate the concepts presented in this study, we use
a NOAA-AVHRR image of a plume development caused by
a fire on a large oil tanker near Genoa, Italy, that occurred
on April, 13, 1991. The dataset consists in NOAA Level 1-b
data with a dynamic range on 10 bits (1024 grey-level values),
geometrically corrected and calibrated, with grey-level values
converted into brightness temperatures values (infrared bands
c3, c4 and c5), and reflectance values (c1 and c2 bands). In
the visible range, a plume reflectance is a function of the
aerosol particle optical thickness (their size distribution) and
of its liquid water content. In the thermal infrared range, a
plume reflectance possesses a signature as it contains particles
radiating as grey bodies. Fire in itself emits thermal radiation
with a peak in the mid infrared region. Meteorological clouds

have a strong reflectivity in the visible and near infrared
bands. Water bodies strongly absorb radiations in the near
infrared. Fire plumes’ turbulent behaviour is mainly accessed
in the thermal infrared bands of the electromagnetic spectrum,
where the acquisition correspond to the spatial distribution of
temperature.

We denote by ri the pixels’ grey-level values of channel
ci in the NOAA-AVHRR acquisition dataset (1 ≤ i ≤ 5).
Among the simplest functions that makes use of the c2 and c3

spectral bands, we simply take the sum: ϕ(c2, c3) = r2 + r3

with the following conventions: first the values r2 and r3

are normalized between 0 and 1, and the result is clamped
to 1 if r2 + r3 > 1. For the Genoa incident, we present
the data in figure 1, displaying channels c1 (visible) and c5

(thermal infrared) of the acquisition. The singularity exponents
and the resulting MSM are shown in figure 2. Figure 3
illustrates the result of the reconstruction process, performed
on channel c5. The multispectral reduced signal is displayed
figure 4. Almost all clouds are eliminated, and the plume
only remains, displaying strong contrast changes due to the
aerosol’s radiative and reflective properties encoded by spectral
bands c2 and c3.

IV. DICUSSION AND CONCLUSION

The experiments conducted on the Genoa incident provide
particularly good results. This comes from the relatively im-
portant size of the plume in this case. Experimentations con-
ducted on other industrial incidents may sometimes produce
less satisfactory results: the plume is always present, along
with other bodies. Such poor results are particularly noticeable
for small plumes, in which the turbulent behaviour is not easily
assessed due to the spatial resolution of the NOAA-AVHRR
sensor. The search for an “optimal” reconstruction function ϕ,
that would produce satisfactory results in all cases, is a subject
of research. The method presented in this paper is based on the
MMF and consequently is an attempt at characterizing plume
pixels from spatial content associated to turbulence in the data.
Presently, our method can be considered as a preprocessing
step to help the process of pixel-based plume determination,
in the sense that it can be given as an input data to more
classical pixel-based plume detection methods, like the one
presented in [Chrysoulakis et al.2007].

ACKNOWLEDGMENT

This work was done in the framework of the PLUMESAT
project (Use of a satellite ground receiving station for the
detection and monitoring of fires and plumes caused by major
natural and man-made disasters). The PLUMESAT project is
funded by:

- The ”Competitveness” Programme, Action 4.3.6.1.γ of
the General Secretary of Research and Technology of
the Ministry of Development of Greece.

- The ”Platon 2005” Integrated Action Programme (PAI)
of the French Ministry of Foreign Affairs, through
EGIDE.



Fig. 1. NOAA-AVHRR acquisitions of the Genoa event of April 13, 1991,
channels c1 (visible, top) and c5 (thermal infrared, bottom). The plume
generated by the fire incident is denoted by an arrow.

Fig. 2. Top: singularity exponents, computed on a selected rectangular
area around the incident in the Genoa acquisition, channel c5 in the NOAA-
AVHRR dataset. Bottom: the oriented MSM, made of most singular points.
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