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Abstract— In this paper, we deal with the problem of extracting
meaningful textural features leading to good segmentations on
satellite images of natural environments. Standard texture fea-
tures using graylevel co-occurrence matrices have been widely
applied on remote sensed images but they impose limitations
(due to finite window sizes) as poor spatial localization. We have
generalized the definition of texture features using a multiscale
framework, in order to take advantage of multiscale properties of
natural images. The new definition improves spatial localization
and the relevance of the parameters. We then investigate the
dependencies among different features for classification purposes.
An unsupervised scheme of classification was performed on
different satellite infrared images. We see that natural, chaotic
images should be treated with a different methodology.

I. I NTRODUCTION

Texture segmentation is one of the central problems in
image processing and has given rise to an abundant scientific
literature [11]. Techniques which use textural (combined with
spectral) information are among the methods which have given
the best results in satellite imagery [12].The main problem in
the segmentation of natural environment images is the large
variability of texture characteristics over them.

Segmentation of images is usually performed in two
stages [9]. In a first stage, features characterizing the texture
are calculated. In a second stage, those features are used to
determine uniform regions over the image. The main purpose
of texture feature extraction is to find relations among pixels
belonging to a similar texture. As satellite images display
fine-grained textures, a statistical approach is often adopted
for remotely sensed data: statistical measures of the spatial
distribution of graylevels are computed. The most common
method consists in computing local co-occurrence matrices
representing joint probabilities of graylevel pairs [8] and from
that to derive some statistical measures [13]. Classification
schemes based on those methods provide good results in cloud
classification [13] [7] or land cover segmentation [5], and show
also good performance on benchmark images [11].

In this paper, we focus on the use of multiscale textural
features for the segmentation of infrared images of natural
environments. We show the limitation of a classification

scheme on meteorological images, as the features appear to
be mutually functionally dependent. In the next section, we
introduce the concept of multiscale textural features which
generalize the classical definition. In section III, we present
measures of functional correlation between features computed
on Landsat, Spot and MeteoSat infrared images. We perform
then a classical K-Means classification on those data in sec-
tion IV and we interpret the different results in section V.

II. M ULTISCALE TEXTURAL FEATURES

Information in a natural image is not contained at only
one scale: multiple objects of different real and apparent sizes
appear intervowed in a complicated mesh. It is thus necessary
to relate somehow information from the different scales of
resolution. Approaches based on co-occurrence matrices, gen-
erally obtained over fixed size windows, need to be extended
in order to acquire textural features at several scales [10].

We propose to generalize co-occurrence in a multiscale
framework by introducing a non-uniform, scale-invariant
weighting function in the computation of spatial distribution of
grey-levels variations. The standard way for the evaluation of
gray-level distribution consists in defining small (overlapping
or not) windows of predefined size around each pixel, then
computing the relative frequency of the observed pairwise
graylevels and finally calculating a representative feature
(GLCM approach [13]). In our approach, instead of defining
a small window around the pixelx, we consider a rather
large windowW (x) but each pair of graylevels is assigned
a weight so that pairs of pixels further and further away will
contribute less and less. In such a way, a good localization
is obtained, even for large windows. We define the multiscale
joint probabilitypWij (x) of a graylevel pair(i, j) by: pWij (x) ∝∑
y,y′∈W (x)|I(y)=i,I(y′)=j |x− (y + y′)/2|−α. We choose the

exponentα = 2. Due to the scale invariant character of this
weight function, the result does not in principle depend on the
size of the window [6], although we limit the calculations to a
21×21 window to avoid divergences and to fasten calculations.
For that reason, the computation of the features [13] does not
depend either on any fixed scale: it is scale invariant. This



Fig. 1. Examples of multiscale textural features computed on an infrared
MeteoSat image. From top to bottom, from left to right: original image,
contrast, correlation, homogeneity, energy and entropy.

method provides a better spatial localization than the classical
methods and reduces the overestimation in feature (Fig. 1).
Moreover, for some features (like entropy, energy or contrast),
assuming statistical translational invariance, it is possible to
consider marginal probabilitiespWi (x) ∝

∑
y:I(y)=i |x− y|−α

(GLV approach [2]) instead of joint probabilities, what leads to
features attaining a better performance in spatial localization,
significancy, computer storage and computation time.

III. C ORRELATION IN FEATURE SPACE

By calculating many features, we form a multidimensional
classification space which helps to determine the class each
pixel belongs to. Deciding which features are the most relevant
has been the focus of many research efforts [12]. A selection
process is usually applied on the feature space, which consists
in determining the most discriminant textural features [7] [4].
It reduces the cost of classification by reducing the number
of features that need to be collected and provides a better
classification accuracy.

However, these conventional methods treat the different
features as independent ones. The selection of uncorrelated
features is necessary to perform efficient segmentation. In [1],
the authors conclude that energy and contrast are the most
efficient in terms of visual assesment, and, hence, they recom-
mend the combined use of those parameters for discriminating
textures. Other studies [5] show that energy, contrast and
correlation are the less correlated parameters and that energy
is the best texture parameter. In [12], homogeneity is chosen
as the most effective textural parameter.

We investigate here the statistical meaning of six textural
features: entropy, energy, contrast, variance, homogeneity and
correlation [8]. We measure their mutual dependencies in order
to exclude redundant, less significant features. For any couple
of featuresF ,F ′ we will calculate the mutual information
I1(F ,F ′) (which is a measure of the independency of both
variables) and the correlation ratioI2(F ,F ′) (which measures

their functional correlation) [3]:{
I1(F ,F ′) = H(F)−H(F | F ′)
I2(F ,F ′) = V (E[F | F ′])/V (F) (1)

where the functionsH, E andV stand for entropy, expectation
and variance and where the symbol| denotes conditioning.
The closerI1 and I2 are to their maximum values (H(F) in
the case ofI1, 1 in the case ofI2) the more dependent the
features are, while values ofI1 and I2 close to zero imply
independency of the features.

featuresF cont. homo. corr. ener. var.

MeteoSat data: I1 1.416 0.987 0.280 2.621 1.533
I2 0.756 0.668 0.331 0.899 0.744

Spot data: I1 0.812 0.517 0.236 1.622 1.104
I2 0.402 0.389 0.202 0.680 0.533

(a) Mutual informationI1 (in bits) and correlation ratioI2 of different
featuresF with respect to the entropy.

(b) Conditional distributions of features with respect to entropy for
MeteoSat (top) and Spot data (bottom).Left : contrast;Middle : ho-
mogeneity;Right: energy.

Fig. 2. Functional correlation between features, computed on samples of
MeteoSat (201350× 460 images) and Spot data (201000× 1000 images).

These measures are performed for different kinds of infrared
images: Spot NIR images (TOC channel 3,0.79µm−0.89µm),
Landsat NIR images (band 4,0.76µm − 0.90µm) and also
MeteoSat thermal IR images (10.5µm−12.5µm). In Figure 2,
we present the values ofI1 andI2 for some features computed
on large samples of such images and the corresponding con-
ditional distributions. The dependence between homogeneity,
contrast, variance energy and entropy turns out to be stronger
for MeteoSat data than for Spot data. For Spot data, this
dependence is multivalued. Correlation and entropy are the
less mutually dependent features; however correlation is not
very significant as it poorly locates structures (Fig. 1).

IV. I NTERPRETATION FOR CLASSIFICATION PURPOSE

Using sets of computed textural features, we can perform
a segmentation of infrared images with a classical K-Means



method [9]. The results of the segmentations on land-cover
images can be compared with those based on all spectral
channels (Fig. 3); textural features allow to characterize some
well textured regions (fields and water) but have difficulty to
extract small textured areas (cities). For MeteoSat images, the
segmentations are not so good, and they are not improved
when new features are included in the classification procedure
(Fig. 4).

Fig. 3. Left : Landsat (left) and Spot NIR land-cover images.Middle : K-
Means Classification with spectral features.Rigth: K-Means Classification
with textural features.

V. D ISCUSSION AND CONCLUSION

We have investigated the mutual dependencies of multiscale
features when computed on two types of infrared images:
land cover images (from Spot and LandSat satellites) and
higher atmosphere temperature images (from MeteoSat). We
see that for land-cover images the different textural features
are dependent on the underlying region, what allows to classify
those regions by applying standard algorithms (as K-means)
in the feature space. This dependence of the features on the
spatial region is evidenced by the weak functional dependence
among features (measured by the mutual information and
correlation ratio) and by the multi-valued character of the
conditional distributions (as different textures are represented
by different clusters in feature space).

On the contrary, segmentation methods based on texture
extraction do not work when applied to MeteoSat IR data,

Fig. 4. Left : infrared MeteoSat image.Middle : K-Means Classification with
textural features.Right: Segmentation obtained with entropy feature only.

a fact already pointed out by Gu [7] and Ebert [4] in the
classification of clouds. One of the reasons of this failure lies
in the fact that those methods assume regularity conditions
that are not satisfied by MeteoSat images (those images are
related to thermodynamical properties of a turbulent, chaotic
flow). A more detailed analysis of the features shows a
remarkable degree of mutual dependency among features,
together with narrow, uni-valued conditional distributions of
pairs of features. This dependency means that all the features
are sensitive to the same property of images and multiple
feature classification does not provide new meaningful fea-
tures. Henceforth, the segmentation has to be carried out by
means which take into account the properties of the flow, as
for instance performing multiscale singularity analysis [6].

To conclude, the results shown so far means that, unlike
what is discussed in [1], there is not an image-independent
methodology for feature selection, and in particular classifica-
tion techniques on multi-feature spaces do not work efficiently
for every kind of data disregarding inherent structure of
images. Methodologies which are related to the properties of
the object of study, specially in the case of natural, chaotic
images, should be considered.
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