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Abstract

A new model for the multiscale characterization of tur-
bulence and chaotic information in digital images is pre-
sented. The model is applied to infrared satellite images for
the determination of specific areas inside the clouds. These
images are difficult to manipulate however due to their in-
trinsically chaotic character, consequence of the extreme
turbulent regime of the atmospheric flow. In this paper we
briefly review some known techniques for processing such
data and we will justify the necessity of multiscale meth-
ods to extract the relevant features. In the theory presented
herein, one main attribute is determined for every image:
the Most Singular Manifold (MSM, of fractal nature), char-
acterizing the sharpest changes in graylevel values. We will
see that the most important set (from the statistical point
of view) is that which both contains the sharpest transi-
tions (MSM) and maximizes the local entropy. For that rea-
son, images can be reconstructed to a good quality from the
value of the gradient over that set of maximal information.
The results are interpreted according to their relevance for
determining meteorological features.

1. Introduction and motivation

We are interested in devising adequate techniques for
processing images for which classical edge operators, or
classical algorithms for region segmentation may not be ap-
propriate. This is precisely the case when turbulent, chaotic
transitions between graylevel values take place in the area
of interest and its boundary [13]. Examples of such images
are typically found in satellite imagery, specifically in mete-
orology and oceanography. For those images, the meaning-
ful entities are located in the most chaotic areas, and thus
are difficult to extract. Moreover, satellite images are often
acquired in noisy conditions, including numerous artefacts
that superimpose on the turbulent region (sharp variations
in luminance, missing data) leading to very poor results for
classical image processing operators.

We introduce a novel approach based on multiscale anal-
ysis of irregular graylevel transitions. This approach leads

to a decomposition of the image which allows to determine
specific complex turbulent regions. We show how this de-
composition is related to classical texture information, like
entropy or cooccurrence.

As regards applications, this paper deals with MeteoSat
images acquired during a couple of days in summer 1998 in
an infrared channel (10.5µm− 12.5µm wavelength). The
structures displayed on those images (see Fig. 1) are con-
vective clouds, which are characteristic for the intertropical
convergence zone (ITCZ) over western Africa and are gen-
erally responsible for sahelian rainfalls [1]. The final goal
will be to determine pluviometry directly from the infrared
signal, although we will not discuss that issue in this paper.

Figure 1. MeteoSat infrared image.

In the next section we review previous work. In sec-
tion 3, a multiscale technique called multifractal analysis
is introduced. It allows splitting images in different fractal
components, one of them turns out to be the most relevant
one. In section 4 we show the links between multifractal
analysis and classical texture description based on coocur-
rence matrices; we make explicit the connections between
local entropy and the relevant fractal component. Finally,
we discuss the work in the perspective of future applica-
tions in section 5.

2. Previous work

In the literature, we generally distinguish four ma-
jor families of segmentation methods (see reviews in [4]
and [7]): statistical methods (which consist in character-
izing stochastic properties of graylevel spatial transitions),



geometrical methods (based on the idea that textures are
made up of primitives with geometrical properties), model-
based methods (which intend to capture the underlying
process that generated the textures) and signal-processing
methods (which perform frequency analysis of the textures).

Classical methods generally use textural features, which
quantify the texture content in a small, local region of the
image [4]. Those methods do not always take into account
scale invariance. For example, many approaches fail to ac-
curately model textures with long edges or sharp disconti-
nuities. Other approaches, because they recognize textures
using simple local measures, implicitly assume that textures
are self-similar at every scale. Moreover, classical boundary
detection and segmentation methods (such as Markov ran-
dom field or other algorithms motivated by physical pro-
cesses [10]) assume regularity conditions that are not sat-
isfied in the case of turbulence. Consequently it is usually
difficult to extract regions of irregular structures.

However, turbulent, chaotic signals can be characterized
by means of their singularity fronts, that is, the set of pix-
els over which the most drastic changes in graylevel value
take place. In fact, all the pixels in the image can be classi-
fied according to the strength of the transitions, giving rise
to a multi-fractal splitting. Multifractal measures were first
introduced for dealing with energy dissipation in turbulent
fronts [5]. Every point in the flow is assigned a singular-
ity exponentvia a wavelet transform analysis [2]. Those
techniques were further developped for 2D signals in the
context of real world images in [12]. They provide two dif-
ferent types of data. The first data is a set characterizing the
sharpest transitions (MSM: Most Singular Manifold); the
second data describe the distribution of luminance over the
MSM. The computation does not rely on a spatially fixed
window as it is the case in usual image processing methods
for computing entropy or coocurrence matrices [6] [9]. We
describe the method and the MSM in the next section. The
reader is referred to [12] for the full discussion.

3. The Most Singular Component

We will develop in the following the basis of multi-
fractal analysis. The first point concerns the definition of
an apropriate multifractal measure. For a turbulent sig-
nal T (~x), the density of the measureµ was defined as
dµ(~x) = d~x |∇T |(~x), that is, the measure of a ballBr(~x)
of radiusr centered around the point~x is given by:

µ(Br(~x)) =
∫

Br(~x)

d~y |∇T |(~y) (1)

Such a measure gives an idea of the local variability of
graylevels around the point~x. In turbulent flows, a simi-
lar expression defines the local dissipation of energy, and it
was supposed to discriminate the complicated structures in

which energy is injected and dissipated in the flow. It was
observed that for turbulent images such a measure is mul-
tifractal: it is characterized by local singularity exponents
h(~x) in the way:

µ(Br(~x)) = α(~x) rd+h(~x) + o(rd+h(~x)) (2)

whered is the dimension of the environment space,d = 2
for images. But over discretized images it is difficult to
make a log-log linear regression of eq. (2), so it is conve-
nient to use wavelet transforms of the measure. The wavelet
transform ofµ with the waveletΨ at the point~x and the
scaler is given by:

TΨµ(~x, r) ≡
∫

d~y |∇T |(~y)
1
rd

Ψ(
~x− ~y

r
) (3)

For multifractal measures wavelet transforms also allow to
compute the exponents [3], according to the following for-
mula:

TΨµ(~x, r) = αΨ(~x) rh(~x) + o(rh(~x)) (4)

Usual wavelets used for assessing the value ofh(~x) are
those in the family(1 + |~x|2)−γ for γ > 1, see [12]. The
log-log linear regression applied to eq. (4) showed a good
regression coefficient for the vast majority of points. In
Fig. 2 we show the distribution of obtained singularities
h(~x) across an infrared image.
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Figure 2. Left: empirical distribution of singulari-
ties; right: orientated MSM (grey: negative orientation;
black: positive orientation; white: non MSM).

This distribution is in good correspondence with the one
predicted for log-Poisson multifractals. Full discussion on
log Poisson multifractals and their connection with recon-
struction can be found in [11] and [12]. We just present here
the basic concepts. In log Poisson multifractals the whole
multifractal signal can be reconstructed from just only one
component, the one associated to the most singular (i.e.,
most negative) exponent, which we will denoteh∞. We
will call that fractal component the Most Singular Manifold
(MSM) and it will be denoted byF∞ (see Fig. 2). Let us
define the density function ofF∞, δ∞(~x). It equals1 if
~x ∈ F∞, 0 if ~x /∈ F∞. We define the restricted gradient



∇T∞ ≡ ∇Tδ∞, that is, the gradient over the MSM. The
reconstruction formula is expressed as:

T (~x) = (~g ?∇T∞)(~x) = (gx ? ∂xT∞+ gy ? ∂yT∞)(~x)
(5)

where? means convolution and~g is the reconstruction ker-
nel, which is easily represented in Fourier space as~̂g(~f) =
i ~f/f2. In Fig. 2 we show the MSM at a rather coarse reso-
lution (h∞ = −0.5 ± 0.3) and, in Fig. 3, the reconstructed
image (PSNR:36.6 dB with respect to the original image in
Fig. 1) from the field∇T∞ defined by the MSM.

Figure 3. Reconstruction (left) and reduced signal
(right), the later obtained from the orientated MSM (see
text).

The quality of the reconstruction is really good, validat-
ing the whole approach. An interesting related concept is
that of the Reduced Multifractal Signal (RMS), that we will
denoteTR(~x). It is a signal having the same multifractal
structure as the original one, but a more uniform temper-
ature distribution (ideally attaining the most uniform dis-
tribution compatible with that multifractal structure). To
build such a signal, we apply the reconstruction kernel over
a naive restricted gradient. We will assign to every point
in the MSM a unitary vector gradient, perpendicular to the
MSM and with the same orientation as∇T . We subsitute
∇T∞ in eq. (5) by this simple vector field to obtainTR(~x)
(see Fig. 3). Let us remark that such an image has the same
multifractal exponents (so the same MSM) as the original
one, but a different, more uniform spatial distribution of
graylevels.

4. Texture properties and the MSM

We are particularly interested in the statistical properties
of meteorological images. We intend to exploit the prior
knowledge that spatial graylevel gradients are rather small
in the heart of the cloud but more important close to its
boundary [8]. Spatial distribution and spatial dependence
among local graylevel values have been studied earlier in
texture analysis. The most commonly texture features’ ex-
traction method for remotely sensored data consists in com-
puting graylevel cooccurrence matrices and statistical mea-
sures of entropy. Those methods show good performance

on benchmark images [9]. As mentioned in the section 2,
the cooccurrence statistics use local properties to character-
ize texture. Typically, this is done by extracting information
from a window of predefined size and centered on the pixel
of interest. There is however a compromise in choosing the
window size: small size reduces the discrimination ability
whereas large size reduces the capability of detecting region
boundaries.

Haralick et al. [6] introduced the method to compute
statistics of cooccurrence matrices. The cooccurrence ma-
trix is the matrix of relative frequencies of two graylevels
separated by a given distance and at a given orientation.
To characterize spatial texture, several matrices need to be
computed for different distances and orientations. Taking
into account the multiscale nature of wavelet transforms,
the computation of the cooccurrence matrices must be per-
formed at different resolutions while information from dif-
ferent angles can be integrated within the same filter. Mul-
tifractal analysis takes advantage of localization properties
and provides a spatial density function of the cooccurrence
textures. Statistics like entropy can then be computed in
order to reflect some characteristics of the texture and to
integrate local information in image segmentation.

Local entropy can be directly calculated from the local
coocurrence matrix (it is one of the 14 parameters defined
by Haralicket al [6]). It measures the amount of uncertainty
inherent to the probability distribution. In which regards
to graylevel distribution, entropy is maximized for the uni-
form graylevel distribution. Regarding spatial distribution
of pixels, entropy is maximized when pixels become sta-
tistically independent. We propose a method to estimate
the local entropy of graylevels around every pixel. The
standard way consists in defining a small window around
the point, then computing the relative frequencyfl of the
observed graylevels and finally calculating the entropy as
S = −

∑
fl log2 fl (in bits). However, a too small win-

dow throws a constant, maximal entropy because of the
lack of sampling, while a too large window loses localiza-
tion. Our approach consists in assigning a weight to the
observed cases when calculating the frequenciesfl, so that
pixels further away from the base pixel will contribute less
and less. We assign a1/r2 weighting (r: distance to the
central pixel), as the number of pixels at a distancer grows
as2πr. We limit the weighting to a21×21 window and the
bit depth to 8 bits (256 graylevels).

The entropies for the original and reduced images, ac-
cording to our method, are given in Fig. 4, from which we
can make two interesting remarks. First, the pixels which
locally maximize the entropy corresponds to those of the
MSM, giving another interpretation of this set. It is more
convenient to use the MSM as it is scale independently de-
fined, which is required for an appropriate analysis of turbu-
lent images. Second, entropy over the RMS is much more



Figure 4. Entropies for the original signal (left) and
reduced signal (right)

uniform: ideally it would be piecewise constant, which
would confirm the role of the RMS as a uniform temper-
ature version of the original image.

5. Conclusion and future work

In this paper we have presented a multiscale method for
image segmentation using multifractal analysis. Multifrac-
tal images can be decomposed into a collection of different
fractal sets, each one conveying a certain amount of infor-
mation. One of those fractal components, which is called
the Most Singular Manifold (MSM), is shown to be the most
informative for this type of images. The MSM describes
somewhat temperature transitions in atmosphere and thus it
is related to convective activity in clouds.

Classical methods based on texture extraction, boundary
detection, etc do not work so efficiently when applied to
this kind of data because of the multiscale properties char-
acteristic to turbulent flows. They are usually defined over
finite size windows, which can only describe the behaviour
of the image at a fixed resolution. Multifractal segmentation
of images is a scale invariant decomposition which could
only be retrieved in classical methods when the zero limit
of different resolutions is taken. In order to compare the
two approaches we have shown how the MSM is related to
texture information contained in local entropy (computed
out of a cooccurrence matrix). We defined a method to esti-
mate local entropy which generalizes window managing to
a more scale invariant scheme, and we verified that the local
maxima of the so obtained entropy are closely related to the
MSM. As entropy measures information, the result means
that the MSM contains the (locally) most informative points
in the image. It is so not so surprising that image can be
reconstructed (via a linear kernel) knowing the gradient of
graylevels over the MSM.

As a part of future research, we intend to apply the model
to meterological satellite images to detect and character-
ize rainfalls in convective clouds. Our approach will be to
compare the reduced signal (with the most uniform tem-
perature distribution compatible with the multiscale struc-

ture) and the original one in order to find foci of tempera-
ture drop or increase - which are associated to precipitation.
Moreover, since we are dealing with moving structures, it
would be particularly relevant to exploit dynamic informa-
tion too. New research directions should then include the
use of information on motion to obtain segmentation based
on spatio-temporal analysis.
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