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ABSTRACT

The last generation of satellites leads to the very high-reso-
lution images which offer a high quality of detailed infor-
mation about the Earth’s surface. However, the exploita-
tion of such images becomes more complicated and less ef-
ficient as a consequence of the great heterogeneity of the
objects displayed. In this paper, we address the problem of
edge-preserving smoothing of high-resolution satellite im-
ages. We introduce a novel approach as a preprocessing
step for feature extraction and/or image segmentation. The
method we propose is related with the idea of resolution
reduction and is derived from the multifractal formalism
used for image compression. First, a multifractal decompo-
sition scheme allows to extract the most singular transitions
of the image. Then, an entropy-based criterium enables to
consider a particular manifold composed with the most, si-
multaneously, relevant and singular pixels. Finally, a recon-
struction scheme performed over this manifold provides an
approximation of the original image. Such an approach is
ideal, as it assumes that objects can be reconstructed from
their boundary information, and it provides presegmented
images where the main structures are preserved.

1. INTRODUCTION

In the last decade, the improvement of the technology for
observing the Earth from space has led to a new class of im-
ages with very high spatial resolution (e.g. 2.5m for Spot
images or even 1m for Ikonos images) [1]. High resolution
(HR) imagery offers a new quality of detailed information
about the properties of the Earth’s surface; they are mainly
concerned with the land-surface observation. As smaller
and smaller objects are now available, as well as precise
contours of larger objects, automatic methods for extracting
these objects are of great interest. Consequently, this has
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given rise to a growing interest on image processing tools
and their application to this kind of images [2]. However,
due to the fact that HR images show great heterogeneity,
standard techniques for analyzing, segmenting and classi-
fying the data are faced with increasingly difficult hurdles.
When the resolution increases, the spectral variability also
increases, which can affect the accuracy of further classifi-
cation or segmentation schemes. Classical approaches can-
not produce satisfactory results because they may induce si-
multaneously under and over-segmentation within a single
scene that confuse the global information and prevent fur-
ther analysis. Generally several preprocessing steps may be
required before such methods can be applied.

This paper introduces a new approach for segmenting
HR images as a preprocessing step for feature extraction
and/or image classification. The problem can be related
with the idea of resolution reduction [3]: the retained tech-
nique should enable to preserve the main features of the
original image corresponding to the boundaries of the ob-
jects while homogeneizing the other parts. The need for a
multiscale approach is well recognized [4]: even on a sin-
gle scene, different scales of analysis are needed, depending
on the homogeneity of the objects under consideration and
on the desired final application. Thus, for both reasons, we
address this problem with a multifractal approach derived
from data compression [5]. Like many image processing
techniques, it makes use of the image edge information: it
assumes that objects can be reconstructed from their bound-
ary information [6]. The segmentation process consists in
three main steps. First, meaningful subsets of the original
HR image are extracted using a multifractal decomposition
scheme. Then, an entropy-based criterium enables to select
only the most relevant pixels in those subsets. The measure
we propose enables to take into account spatial locations
and scales of objects. Finally, a propagation kernel is used
to partially reconstruct typical object shapes from the values
of the signal over the selected manifold.

The paper is organized as follows. In section 2, we re-
view the multifractal approach for extracting the meaning-
ful entities and we introduce the method for reconstructing
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the image. In section 3, we define the measure for select-
ing the reconstructing manifold and, finally, we present the
presegmention algorithm. Some results are displayed and
discussed for Ikonos HR acquisitions.

2. THE MULTIFRACTAL MODEL

Natural images can be characterized by their singularities,
i.e. the set of pixels over which the most drastic changes
in graylevel value occur [7]. In [5], the authors introduced
a technique based on the multifractal formalism to analyze
these singularities. For this purpose, a multifractal mea-
sure µ is defined through its density dµ(x) = dx |∇I|(x),
where |∇I| denotes the modulus of the spatial gradient ~∇I
of the image I . This measure gives an idea of the local vari-
ability of the graylevel values around the point x. It was
observed that for a large class of natural images, the mea-
sure µ is multifractal [5], i.e. behaves like:

µ(Br(x)) ∼ r2+h(x) (r → 0), (1)

with Br(x) the ball of radius r centered around x. All the
scale dependance in eq. (1) is provided by the term r2+h(x)

where the exponent h(x) depends on the particular point
considered. This exponent is called singularity exponent
and quantifies the multifractal behaviour of the mesure µ.
Its estimation is done through a wavelet projection of the
measure µ [8]. The reader is refered to [5] for a full discus-
sion. This way, by assigning to each pixel the local measure
of the degree of regularity of the signal, the image can be
hierarchically decomposed. Namely, the subsets gathering
pixels with similar exponent are fractal subsets and exhibit
the same geometrical structure at different scales. Besides,
this approach allows isolating a particular fractal compo-
nent, the so-called MSM (Most Singular Component, de-
noted F∞) associated with the strongest singularity (i.e. the
most negative exponent, denoted h∞) [5].

From multifractal theory, the MSM can be regarded as a
reconstructing manifold. In [6], it has been shown that using
only the information contained by this set and conveyed by
the spatial gradient, it is possible to predict the value of the
intensity field at every point. This result is in concordance
with Marr’s conjecture, who intuited that the image could be
retrieved from its multiscale edges [7]. The algorithm can-
vas proposed in [6] produces a perfect reconstruction, the
so-called FRI (Fully Reconstructed Image), from the MSM.
It is performed by the use of a rather simple vectorial ker-
nel ~g capable to reconstruct the signal I from the value of its
spatial gradient ~∇I over the MSM. Namely, if we define the
density function δ∞ of F∞ (which equals 1 over F∞ and 0
elsewhere) and the gradient ~v∞ ≡ ~∇I δ∞ restricted to the
same set (which equals ~∇I over F∞ and 0 elsewhere), the
reconstruction formula can then be expressed as:

I(x) = ~g ? ~v∞(x) (2)

Fig. 1. Top: excerpt of a HR image acquired by the satellite
Ikonos (left, 1m× 1m per pixel) and graylevel representation of
its singularity exponents (right). The brighter the pixel, the greater
the singularity at this point; most singular pixels are mainly ob-
served near the contours. Bottom: MSM (left, in black) extracted
at h∞ = −0.12± 0.28 and FRI (right) reconstructed with eq. (2).
The MSM gathers 65 % of the pixels of the image, which is a rather
coarse estimation; the PSNR for the FRI is 30.26 dB.

where ? denotes the convolution. The universal reconstruc-
tion kernel~g is easily represented in Fourier space by ~̂g(f) =
i f / |f |2, where ˆ stands for the Fourier transform, f denotes
the frequency and i the imaginary unit (i2 = −1). The prin-
ciple is that of a propagation of the values of the signal over
the MSM to the whole image.

Practically, the extraction of the MSM depends on some
parameter ∆h that determines the range of values retained
as the most singular. Namely, a pixel x is assigned to the set
F∞ if it verifies a relation of the form h∞ −∆h ≤ h(x) ≤
h∞ + ∆h. Besides, the rule for deciding which pixels will
be incorporated into the MSM is rather empirical and we
are not ensured that the FRI is the better reconstruction we
could obtain. We would like to introduce some criterium for
deciding which pixels should be considered into the recon-
structing manifold so that the FRI is a good approximation
of the original image.

3. ENTROPY BASED SELECTION

For extracting meaningful subsets in the image, it is rather
natural to propose a measure that quantifies the informa-
tion content. Namely, information theoretic concepts sur-
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Fig. 2. Graph of the PSNR values (y-axis) of the FRI vs. the av-
erage MLE (x-axis) over the MSM. The FRI’s were reconstructed
from 18 MSM’s with equal density. The best PSNR’s were reg-
istered for the MSM’s with the highest average MLE’s.

vey for quantities that enable to estimate the relevance of
patterns [9]. A key quantity is provided by the Shannon’s
definition of entropy: the greater the entropy, the greater is
the number of required bits to encode the signal. In the do-
main of image processing, much work has been carried out
on the applications of entropy, not only image coding but
also image analysis, data filtering [10]... However, the con-
cept of entropy following Shannon’s definition is a global
quantity. Moreover, it doesn’t take into account the spatial
relationship between pixels and it is not matched to quan-
tify the distribution of the information at different scales of
resolution. Thus, it is needed to define a local measure of
the information content and it is necessary to introduce a
multiscale processing in the estimation of entropy [11].

Following [12], we perform a multiscale generalization
of the local entropy, for what we need to define the lo-
cal multiscale distributions of graylevels. Namely for each
pixel x in the image, all points in its neigbourhood are as-
signed a relative weight that decays with the distance to x
as a power law. The local histogram pi(x) of graylevels in
a windowW around x is expressed by:

pi(x) ≈
∑

y∈W:I(y)=i

|x− y|−2. (3)

For numerical reasons, we limit the computation to a win-
dow W of size 21 × 21 and the bit depth to 8 bits (256
graylevels). As desired, this model does not fix any scale
of observation: it is scale invariant. The Multiscale Lo-
cal Entropy (MLE) is then defined as the quantity: s(x) =
−

∑
i pi(x) log2 pi(x). It is then possible to observe spatial

variations of this quantity (see Fig 3). This definition mea-
sures how relevant the value of the pixel x is for the knowl-
edge of the graylevels distribution in its neighbourhood.

The selection scheme will depend on some threshold on
the MLE. Singular pixels are gradually incorporated in the
MSM according to their MLE value. It means that a pixel x
will be incorporated into the reconstructing manifold if it

Fig. 3. Entropy-based segmentation. From top to bottom, from
left to right: Ikonos excerpt, MLE over the excerpt (the brighter
the pixel, the stronger the entropy at this point), filtered MSM ac-
cording to local content of information and reconstruction using
the filtered MSM. The PSNR is 27.75 dB.

satisfies a relation of the form:

h∞ −∆h ≤ h(x) ≤ h∞ + ∆h & s(x) ≥ sthres (4)

where sthres is some threshold value below what we con-
sider that pixels don’t carry relevant information. Following
this criterium, we can show that for different MSM’s ex-
tracted from the same image and gathering the same quan-
tity of pixels, the best FRI’s are obtained for the MSM’s
with the largest average MLE’s (see Fig. 2). At this point,
one may discuss the fact that high MLE values are corre-
lated with strong singularities. However, from information
theory, the MSM can also be interpreted as the most rele-
vant set in the image [6]. In [12], it has been evidencied
that this subset is related with the maxima of the MLE: the
decomposition in fractal subsets is related with the hierar-
chy imposed by the MLE. It ensures that candidate pixels
in the MSM will have rather high MLE values and it im-
plies that our selection criterium won’t suppress meaningful
structures.

4. DISCUSSION

In Fig. 3, we show the results of the segmentation of some
Ikonos image thanks to our approach, where the parameters
∆h and sthres were chosen empirically. It shows interesting
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features, as we see that: there is a high degree of smoothing
in rather homogeneous areas; the main edges are preserved,
even those being represented by small gray value changes.
The FRI provides an interesting segmentation of the original
image: it cleans up noise in the homogeneous areas but pre-
serves important structures and also preserves the graylevel
distribution. Besides, the quality of the approximation is
good, which is an essential requirement for further process-
ing like feature extraction. Close inspection of the image
also shows that the method is able to enhance subtle tex-
ture regions, like roads. Namely, it is good at enhancing
textures, as it smoothens the image, and, thus, suppresses
small elements corresponding to the unrelevant features.

One of the major advantages of the method is that it is
parameterizable. We should notice that the reconstruction
algorithm for computing the FRI defined by the eq. (2) is
linear [6]. Thus, the more singular pixels the reconstructing
manifold gathers, the closer to the original image the FRI is.
So, we can theoretically approximate the original image as
close as desired, just by adjusting the threshold parameter
sthres. This way, the degree of smoothing of objects in the
image can be controlled. The main limitation lies in the fact
that we need to define empirically some parameter, like the
threshold parameter sthres, if not theoretically.

5. CONCLUSION

In this paper, we have proposed to perform a presegmenta-
tion of HR images prior to any processing. For this purpose,
we adopt an approach related with data compression and
based on the multifractal analysis of images. The main idea
is that of a partial reconstruction of the images from the
extraction of their most important features.

The multifractal algorithm is performed in two steps,
which consist in: first, extracting the most singular transi-
tions of the signal, the MSM, that mainly consists in objects
boundaries, and, then, propagating the graylevel values of
the spatial gradient from the MSM to the other parts of the
image. The multiscale approach allows to retain the relevant
edges without significant artifacts, no matter at which scale
they happen. The quality of the reconstruction depends on
the set of pixels retained in the reconstructing manifold.
Thus, the full reconstruction strategy implies an interme-
diate processing step, for automatically selecting those pix-
els. Namely, we propose a selection criterium for which we
compute a multiscale local entropy-like variable, the MLE;
we finally include in the reconstructing manifold the pix-
els retained as the most informative among those that were
already detected by the multifractal analysis.

This approach results in very nicely smoothed homo-
geneous areas while it preserves the main information con-
tained in the boundaries of objects. The image structures
are not geometrically damaged, what might be fatal for fur-

ther processings like classification or segmentation. Indeed,
it creates homogeneous regions instead of points or pixels
as carriers of features which should be introduced in further
processing stages. Moreover, the reconstruction is parame-
terizable. The fidelity to the original image can be adjusted,
by gradually incorporating, according to the MLE values,
as many details of the original image as desired so that the
degree of smoothing can be controlled. It should be also no-
ticed that this method can easily be extended to multispec-
tral images, by processing each band separetly. An improv-
ment regards the automatical determination of, the threshold
parameter used in this approach.

As a continuation, applications to noisy satellite images
restoration should be considered.
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