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ABSTRACT

Efficient coding of natural scenes requires the use
of a proper filter to reduce their redundancy. In
this work we show that nongaussian statistical prop-
erties of natural scenes uniquely define a wavelet
filter that decomposes the image in a set of statis-
tically independent resolution levels. The spatial
statistical dependences still present at a fixed scale
are extremely short-ranged.

1. INTRODUCTION

Given the complexity and degree of redundancy
of natural images, the early visual system had to
find good coding procedures to represent the visual
stimuli internally. To achieve this goal, the visual
system must have learnt the regularities present in
the environment where the organism lived [1]. If
there are image features that tend to appear to-
gether, a cell responding quasi-optimally to them
is rather likely to exist. To find such a represen-
tation one has first to understand the statistical
properties of visual scenes common in the environ-
ment. In particular, the relevance of the second
order statistics has been pointed out some time
ago [2], and internal representations that eliminate
these correlations have been discussed [3]. How-
ever, even if whitening represents an improvement
of the code, it still leaves much geometrical struc-
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ture that should be dealt with more properly [4].
A more systematic study of statistical regularities
that go beyond the two-point correlations has be-
gan rather recently [5, 6, 7]. A novel approach
to understand the statistical properties of natural
images has been proposed in [6] where the non-
gaussian statistics of changes in contrast has been
characterized and explained by means of a stochas-
tic multiplicative process: Contrast changes at a
given scale are obtained from those at a coarser
scale by multiplication with an independent ran-
dom variable. A very rich geometrical structure
has emerged from those studies: contrast changes
are organized in such a way that pixels in the im-
age can be classified according to the strength of
the singularities of the contrast gradient [7]. It
was also checked that the multiplicative process is
present in very different sets of images and in color
natural images [8].

We present in this work a procedure to split
any image in a collection of successive, indepen-
dent resolution levels. This decomposition is based
on the multiplicative process and on projecting the
image over a intrinsic wavelet which is defined sta-
tistically by the requirement of independence be-
tween the resolution layers.

2. WAVELET PROJECTIONS AND
MULTISCALING

Natural images will be described by means their
luminosity contrast c(~x) , which is defined as c(~x) =



I(~x) − 〈I〉, where I(~x) is the field of luminosities
and 〈I〉 its average value across the image ensem-
ble. 1 This quantity lacks a definite scale, what is
seen in the power law characterization of its power
spectrum [9] and in a multiscaling set of variables,
each exhibiting power law behaviour [6, 7]. These
properties can be used advantegeously to design
coding strategies which reduce the redundancy;
this has been already done using the power spec-
trum characterization (see e.g. [10]). As it will be
shown in this work, there exists a wavelet repre-
sentation adapted to the multiscaling power laws
found in [6] that produces a more efficient coding.

In order to focus the contrast at a given res-
olution level it will be projected onto convenient
traslations and dilations of a wavelet Ψ̃(~x) [11].
The shift to the point ~x0 and the dilation of scale
factor r of this wavelet will be denoted as Ψ̃r(~x−
~x0) ≡ Ψ̃(~x−~x0

r ). The wavelet projections T r
Ψ̃
c(~x0)

of the field of luminosity contrast,

T r
Ψ̃
c(~x0) = r−2

∫
d~x Ψ̃r(~x− ~x0)c(~x) (1)

characterize completely the image. This is the rea-
son of the name “multiresolution analysis”: the
wavelet projection is a description of c(~x) at the
point ~x0 when the image is observed at a variable
scale r. For notational convenience the wavelet
projections T r

Ψ̃
c(~x0) will be denoted as αr(~x0).

The question now arises of how the distribu-
tion of αl(~x) could be related to the distribution
of αL(~x), for two different scales l < L. This was
discussed in [6, 7] for the marginal distribution of
αl(~x) (since the marginal distribution disregards
the space index ~x this stochastic variable will be
denoted as αl). The answer is simple: they are re-
lated by a multiplicative process. Denoting by ηlL
the multiplicative stochastic variable, this means
that

αl = ηlL αL , (2)

where the random variable ηlL is independent of
αL. This scale transformation can be thought of

1From now on the angular brackets 〈. . .〉 will denote the
average over an ensemble of images.

as composed of smaller changes; in fact the mul-
tiplicative character of the process implies that it
should be possible to go from scale L to l through
an intermediate scale r; this gives the factors ηrL
and ηlr which are related to the global transfor-
mation by ηlL = ηlrηrL.

The process for arbitrary changes in scale was
discussed in [6, 7] where it was shown that the ran-
dom variable ηlL follows a log-Poisson distribution.
2 This process can be justified as follows. As the
scale is gradually reduced from L to l the wavelet
Ψ̃r becomes more concentrated around the point
~x0, in this way it explores its neighborhood with
finer detail and, at the same time, gives less weight
to the contrast at pixels that now appear closer to
its tail. Depending on the type of singularitites
of the contrast, it may happen that under a small
scale transformation δr its wavelet projection un-
dergoes (with some probability) a discontinuous
change. 3 We will refer to this effect by saying that
a modulation has occurred. The simplest way to
model this situation is to assume that each time
that a modulation occurs the wavelet projection
αr−δr acquires a factor β (0 ≤ β < 1) relative to
αr. Apart from this, since both the contrast and
the wavelet can take positive and negative values,
the sign of αr−δr will also change with respect to
that of αr.

To complete the description of the statistics of
the α’s it will be assumed that:

• modulations are independent events. The
average number of them contained in the
change of scale (lnL− ln l) is denoted by s,

• the sign of the η’s is a random variable inde-
pendent of its absolute value. Besides, plus
and minus signs are equally probable,

• the image ensemble is translational invari-
ant,

2This kind of multiplicative process appears in a wide
variety of systems, for instance in turbulent flows (see [12]
and references therein)

3The singularity could be hidden by a regular piece of
the contrast. If this is the case the singular behaviour will
show up if the wavelet is chosen such that it makes the
regular part to vanish. See [7] for a full discussion of this
point.



• the multiplicative process is scale invariant.

These hypotheses uniquely define the distribution
ρ|ηlL| of the multiplicative process. Under a finite
change from L to l, there will be n modulations
with probability pn that, given the first assump-
tion, is Poisson:

pn =
sn

n!
e−s (3)

The value of |ηlL| after n modulations is propor-
tional to βn: |ηlL| = βnM(l, L). The fact that
the proportionality constant is not one can be un-
derstood by noticing that if no modulations occur
(i.e., n = 0), αl keeps as much singular structure
at the scale l as that seen at the coarser scale L.

The dependence of M(l, L) on the scales l and
L can be obtained by invoking the scale invari-
ance property of the multiplicative process. In
this case, it can only depend on the ratio l/L,
that is M(l, L) = M( lL). A standard argument
shows that it has to be a power law: if the change
from L to l is done through an intermediate scale
r, then because of the multiplicative character of
the process we have M( lL) = M( lr )M( rL), which

can only be satisfied if M( lL) =
(
l
L

)−∆c

. The
exponent ∆c is another parameter of the model.
Taking all these arguments into account, the dis-
tribution ρ|ηlL|(ln |ηlL|) can be expressed as:

ρ|ηlL| = e−s
∞∑
n=0

sn

n!
δ

(
ln |ηlL| − n lnβ −∆c ln

L

l

)
. (4)

Up to now we have considered s, β and ∆c

as independent parameters. However translational
invariance fixes one of them. In fact, from the
definition of the α’s, eq. (1), one checks that its
average over a translational invariant ensemble of
images is proportional to the scale [7]. In turn,
taking the average on both sides of eq. (2), this
implies that

〈|ηlL|〉 =
l

L
. (5)

Imposing this condition over the value of this av-
erage obtained from the distribution in eq. (4) one
has:

s =
∆c − 1
1− β

ln
L

r
, (6)

from where the average number of modulations per
unit of change in scale is s̄ = ∆c−1

1−β .
The existence of a multiplicative process has

direct consequences on the scaling properties of
the moments of αr. Let us denote these moments
by 〈αpr〉. If the log-Poisson model holds, then from
eq. (4) it is easy to check that the moments have
a property called Self-Similarity (SS),

〈αpr〉 = Ap r
p+τp , (7)

where the τp’s are the SS exponents. Notice that
this also implies that any moment can be expressed
as a power of the moment of order q. Choosing
q = 2 this means that

r−p〈αpr〉 = A(p, 2)
[
r−2〈α2

r〉
]ρ(p,2)

, (8)

This relation could hold even when SS is not true.
It is called Extended Self-Similarity (ESS) [13].
The ρ(p, 2)’s are the ESS exponents and theA(p, 2)’s
are geometrical factors. The exponents ρ(p, 2) can
be predicted using the distribution of the multi-
plicative process, eq. (4), to evaluate the moments
of order p in eq. (2). This computation yields

ρ(p, 2) =
p

1− β
− 1− βp

(1− β)2
. (9)

Let us notice that although the model has two pa-
rameters, β and s̄, the ESS exponents ρ(p, 2) de-
pend only on the modulation parameter β. There
is a simple relation between τp and ρ(p, 2):

τp = −s̄(1− β)2 ρ(p, 2) , (10)

Conversely, it can be proven that if SS and ESS
hold and the exponents ρ(p, 2) verify eq. (9), then
αr can be described in terms of a multiplicative
process (eq. (2)) of the log-Poisson type (eq. (4)).
It is then enough to check eq. (9), from where the
existence of a log-Poisson process is derived.

All these properties (SS,ESS and log-Poisson
process) have been experimentally found to hold
for certain class of wavelets (such that some of
their low order moments are zero), and for a wide



variety of collections of natural images, from forest
pictures ([6, 7]) to open lands, city scenes and even
for the chromatic components in color images [8].

2.1. Wavelet basis and multiresolution anal-
ysis

Let us now consider the projection of the con-
trast c(~x) on a dyadic wavelet set Ψ̃

j~k
(~x) = Ψ̃(2j~x−

~k). The wavelet Ψ
j~k

corresponds to a scale factor

r = 2−j , j ∈ Z and displacement point ~x0 = 2−j~k.
Here ~k ≡ (k1, k2), with k1, k2 ∈ Z[11]. If the dis-
crete basis is complete, then the contrast can be
expanded in a wavelet basis orthogonal to Ψ̃ using
the wavelet projections as coefficients. The dual
basis Ψ

j~k
verifies that:

〈Ψ̃
j~k
|Ψ

j′~k′〉 = 2−2jδjj′δ~k~k′ (11)

and the contrast c(~x) can then be expressed as:

c(~x) =
∑
j,~k

α
j~k

Ψ
j~k

(~x) (12)

where α
j~k

= T 2−j

Ψ̃
c(2−j~k). The wavelet basis gen-

erated by Ψ will be called the representation
basis. Its dual basis, defined by Ψ̃ will be referred
to as the analizer basis. Once one of these ba-
sis is known, the other is completely defined by
eq. (11).

The discussion in the previous section refers
to the properties of the marginal distribution of
the wavelet coefficients. The analysis to the vari-
ables α

j~k
themselves; for them the multiplicative

process eq. (2) is generalized to:

α
j~k

= η
j~k
α
j−1,

[
~k
2

] (13)

where [~κ] denotes the vector with components given
by the integer part (rouding down) of those of ~κ.
We will require the variables η

j~k
to be statistically

independent of α
j−1,

[
~k
2

]. Besides, according to the

multiplicative process for the marginals, eq. (2),
the distributions of all the η

j~k
should be identical,

because they only depend on the ratio of scales,
which is always 2 for α

j~k
, α

j−1,

[
~k
2

]. The η
j~k

will

be given rise to the independent resolution levels
of the image.

We will show in the next section that natu-
ral images possess an intrinsic wavelet for which
eq. (13) is fulfilled point by point. This means
that the equality holds for any image, at any scale
and position and that the variables η

j~k
can be ex-

tracted directly from4 :

η
j~k

=
α
j~k

α
j−1,

[
~k
2

] (14)

The representation wavelet Ψ (and so the anal-
izer Ψ̃ is uniquely defined once the assumptions
that the η’s obtained from eq. (14) are scale in-
dependent and equally distributed variables are
stated, and then the representation wavelet Ψ can
be experimentally obtained from a statistical anal-
ysis of the image ensemble. The validity of these
two hypothesis on the η’s has to be verified a pos-
teriori, once the wavelet is known. This is done in
Section 4 as follows: first the the analizer wavelet
Ψ̃ is obtained from the representation wavelet Ψ.
In turn, Ψ̃ can be used to evaluate the coefficients
α
j~k

’s and from them the η
j~k

’s. Once these are
known it is finally checked that they are indeed
scale-independent, identically distributed random
variables, so checking the self-consistency of the
multiplicative process model.

3. THE MOTHER WAVELET

We suppose that the contrast field obtained
from our image dataset can be expanded as a su-
perposition of wavelets, eq. (12), and that the α

j~k
’s

verify eq. (13), where the η
j~k

’s are scale indepen-
dent equally distributed variables. Since the im-
ages have finite size we will take j ≥ 0 where
Ψ0~0 covers the whole image and it represents the
mother wavelet, Ψ0~0 ≡ Ψ. For the same reason,

4The random, independent variable log ηj~k could then
be expressed as a linear relation between the logarithms of
the variables at the two scales. This property has also been
discussed in [14], although the existence of a multiplicative
process was not noticed. Let us also observe that this prop-
erty just holds for the wavelet projections over the correct
wavelet Ψ̃ which is derived in the present work.



Figure 1: Representation wavelet Ψ for the image
ensemble. The function is represented in gray lev-
els, the darkest points indicate the sites where it
takes its smallest values.

the range of ~k = (k1, k2) at the scale j is bounded
as: k1, k2 = 0, 1, ..., 2j − 1.

Averaging c(~x) at each point ~x, it is found
that the average contrast can be represented as
a simple wavelet superposition: C(~x) ≡ 〈c〉(~x) ∝
α0~0

∑
j,~k
|η|jΨ

j~k
(~x). Here |η| is the first order mo-

ment of the distribution of the |η|’s, and we have
used the assumptions that all the η

j~k
’s have the

same marginal distribution and are independent
across the scales. By Fourier transforming this
field, Ĉ(~f), one easily obtains the Fourier trans-
form of the representation wavelet, Ψ̂(~f), that reads:

Ψ̂(~f) =
1
α0~0

Ĉ(~f)− |η|
4

Λ(~f)

Λ(
~f
2 )
Ĉ(
~f

2
)

 (15)
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Figure 2: The wavelet Ψ along the horizontal (left)
and the vertical axis (right).

where Λ(~f) = (1− e−2πif1)(1− e−2πif2). This ex-
pression is very appealing. The right hand side
compares the average contrast at two consecutive
scales (related by a factor 2), and it expresses that
the wavelet is obtained as an observation of the
scale transformation properties of the images. The
average |η| has an a priori known value: |η| = 1

2
(see eq. (5)). This allows to use eq. (15) with no
a priori knowledge about the data.

To obtain experimentally the representation wavelet,
eq. (15) was applied to a large ensemble of natural
images. The data were 200 1024 × 1024 images
selected at random from van Hateren’s dataset
[15]. Figure 1 shows the representation wavelet
obtained with this procedure. It exhibits two clear
features: it is right-left symmetric and roughly up-
down antisymmetric with a sharp central discon-
tinuity (see Figure 2). The first property is ex-
pected: our world remains statistically unchanged
when it is reflected from left to right. The rough
up-down antisymmetry and the related discontinu-
ity are probably due to the sharp contrast between
the sky and the ground.

4. THE PROJECTION INTO THE
EXPERIMENTAL BASIS

Once the analizer wavelet is obtained, it can
be used to evaluate the coefficients α

j~k
and from

them, using eq. (14), the coefficients η
j~k

. Then,
it is possible to check whether the η

j~k
are scale-

independent, identically distributed variables. In
the affirmative case, this fact self-consistently demon-
strates that eq. (15) is the intrinsic wavelet we are
looking for. It is immediate to check that the signs
of the η’s are independent of their absolute values,
|η|, and also scale-independent, so it is only nec-
essary to verify the independence of the |η|’s.

The mutual dependence among the |η
j~k
|’s was

estimated by computing the mutual informations
between two |η|’s. As the number of possible pairs
is very large, only two types of mutual informa-
tions were considered, which should be maximal
by construction: those between consecutive scales
(j−1 and j) at equivalent positions, and those be-
tween consecutive spatial positions (~k and ~k + ~d,
where the components of ~d take only the values 0



and 1) at a fixed scale j.
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Figure 3: P.d.f.’s of ln |ηj | at the scales j = 2 (di-
amonds), 3 (crosses), 4 (squares), 5 (x), 6 (trian-
gles) and 7 (crossed x).

Both quantities, denoted as µj and µ
j ~d

respec-
tively, are always positive and give a measure of
statistical dependence: they represent the num-
ber of bits of information shared by the variables.
Two variables will be independent if and only if
they share 0 bits. The observed values of µj are
very close to 0 (|µj | < 10−4 bits, j > 3), what con-
firms rather well the independence of the η

j~k
’s un-

der changes of scale. On the contrary, the mutual
informations µ

j ~d
are by no means negligible, al-

though they are extremely short-ranged: the vari-
ables η

j~k
and η

j~k′ are statistically dependent when
they are one pixel apart (µ

j ~d
≈ 0.13 bits); after

that distance the mutual information µ
j ~d

decays
dramatically. It is important to remark that there
is no need of spatial independence of the η

j~k
’s

in our wavelet model. For this reason, although
short-ranged, the observed dependence is a signif-
icant source of information about the remaining
statistical structure at a fixed resolution layer. On
the other hand, the η’s define a system of almost
completely independent variables.

To confirm the validity of the wavelet repre-
sentation, eqs. (12) and (15), one has still to check
that the η’s are identically distributed. Figure
3 exhibits the distribution of ln |ηj | for different
scales j. The correspondence between them is re-
ally very good.

5. WAVELET TRANSPARENCY AND
DECORRELATION

It has been frequently argued that the the sig-
nal that arrives to the primary visual cortex has
been already decorrelated in previous stages of the
visual system [3, 16]. In this case, V1 would take
care of coding more complex aspects of images. In
this regard, the way in which the mother wavelet
is constructed guarantees a remarkable property of
transparency to the power spectrum: it defines a
code that is somewhat independent of the second
order statistics of the images. The power spec-
trum of natural images exhibits a power law be-
haviour, S(~f) ∼ f−(2−ε) [2]. Under the assump-
tion of translational invariance, the application of
the decorrelating filter to the contrast is equivalent
to multiplication in the Fourier domain by f1− ε

2 .
Denoting the decorrelated contrast as Dc(~x), it is
immediate to see that it has a representation sim-
ilar to eq. (12):

Dc(~x) =
∑
j~k

α′
j~k

DΨ
j~k

(~x) , (16)

where DΨ indicates the application of the decorre-
lating operator to the representation wavelet and
α′
j~k

= 2j(1−
ε
2

)α
j~k

. Defining now η′
j~k

= 21− ε
2 η
j~k

it is concluded that the decorrelated images also
posses a random multiplicative process. The new
representation wavelet DΨ can be obtained from
an ensemble of decorrelated images by means of
eq. (15). It is known that the value of the expo-
nent ε has fluctuations from image to image [9].
The relevance of the wavelet transparency is that
if the visual stimulus has been decorrelated before
it reaches V1, this area can use the type of filters
described in this paper regardless of the precise
exponent of the power spectrum.

6. CONCLUSIONS

We have shown that images can be represented
as multiresolution objects in terms of an appropri-
ate wavelet basis Ψ, in which each resolution level
is an independent image. One of the advantages
of this representation is that it is based on the ob-
served properties of the contrast gradient [6, 7],



what in turn leads to an automatic reduction of
the redundancy. At the same time the spatial cor-
relations at a given scale are short-ranged, but still
informative.

These results have been obtained with the sim-
plest wavelet expansion, but the tools presented
in this work can be taken as the starting point to
look for more realistic visual filters. This search
should be directed by the experimental observa-
tion that cells in V1 are edge detectors. From this
perspective, the expansion in eq. (12) should be
generalized to include an orientational degree of
freedom. Filters of this type have been proposed
in [17] and found from an independent component
analysis of natural images [18] . These studies
should be combined with the use of overcomplete
basis, this introduces redundancy but the repre-
sentation becomes stable under small changes in
the images [19]
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