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The application of the multifractal formalism to the study of some time series with scale

invariant evolution has given rise to a rich framework of models and processing tools for

the analysis of these signals. The formalism has been successfully exploited in different
ways and with different goals: to obtain the effective variables governing the evolution

of the series, to predict its future evolution, to estimate in which regime the series are,

etc. In this paper, we discuss on the capabilities of a new, powerful processing tool,
namely the computation of dynamical sources. With the aid of the source field, we will

separate the fast, chaotic dynamics defined by the multifractal structure from a new,

so-far unknown slow dynamics which concerns long cycles in the series. We discuss the
results on the perspective of detection of sharp dynamic changes and forecasting.

1. Introduction

The study of the statistical properties of economic time series is the focus of
intense research in the last years 1,2. There is a continuous development of new
methodological tools for the characterization and processing of econometric vari-
ables. This process is very important because it allows to create models to mimic
the evolution of real systems and to identify the relevant mechanisms which govern
their dynamics.

Many time series of variables with econometric interest (as for instance stock
market price series, option rates or foreign currency exchange rates) are known to
exhibit multifractal properties 3,4,5,6,7,8. Apart from the typical statistical proper-
ties of scale and translational invariance the main feature of multifractal systems
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is that they can be decomposed into a collection of sets (the fractal components)
arranged in a hierarchical manner. Under changes in scale a multifractal behaves in
a non-trivial way, due to the combination of scalings of each fractal component, and
leading to the emergence of a collective property known as multiscaling. Almost
since the origins of the multifractal formalism, two basic different approaches have
been established to deal with multifractal systems. One option is to carry out an
statistical analysis on the symmetries of the system, the other is to investigate the
geometric aspects derived from the decomposition of the system in fractal sets.

Historically speaking the first approach is the most frequently used. It has
allowed to develop a rich theory about multifractals, relating them with other prop-
erties, as energy injection cascades, intermittency and anomalous scaling (see 9 for
a discussion). Nevertheless it has some difficulties. Statistical approaches are very
demanding in data (multiscaling distributions are highly curtotic) and, in addition,
there is no intuition about the properties of series at any specific point. Some of
these problems can be solved by using a geometric approach. Methods of this type
are more technical since they require an efficient decomposition of the series in the
different fractal components but they are more powerful and have many advan-
tages, as we will discuss throughout the paper. Here, we will apply the geometrical
approach to the analysis of foreign currency market data series. In particular, em-
phasis is put on the most singular fractal component (from which the original series
can be fully reconstructed) as well as on the concept of source, that allows to identify
different dynamical regimes with different physical (economic) meaning.

2. Reconstructible multifractals

Let us start by giving a short theoretical introduction. To analyze a given temporal
series denoted by s(t) one defines a measure µ of any set A, as

µ(A) ≡
∫
A

dτ |s ′|(τ) (1)

where s′(t) stands for the derivative of s(t). The quantity µ(A) is a measure of
the variations in the series s(t) across the set A. The measure µ allows to locally
characterize the scale invariance of the fractal components. We will say that a time
series s(t) is multifractal if for any ∆t and any time instant t0

µ ([t0 −∆t/2, t0 + ∆t/2]) = α0∆td+h0 + O(∆td+h0) (2)

where h0 is a local exponent depending on the point t0 considered and the shift d

in the scaling has been introduced by normalization convenience; it corresponds to
the dimension of the space of variables (d = 1 in our case)10,11. When a measure
µ is multifractal, a scaling exponent h0 can be assigned to every point t0 which
defines how changes of scale are locally performed. These local scaling exponents
are referred to as singularity exponents because they characterize the functional
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character -i.e. smooth, continuous, singular...- of s(t) at each one of its points.
Any technique assigning a singularity exponent to every point in the series is called
singularity analysis. The obtention of the singularity exponents at each point of
an experimental, discretized series require of an appropriate interpolation scheme
and of some filtering capabilities, all that usually attained by the use of wavelet
projections12,13,11,10.

Once singularity exponents are known at every time t (which we will represent
by the function h(t)), it is possible to classify points according to common values
of the exponents. We define the fractal component Fh associated to the singularity
exponent h as the set of points verifying Fh ≡ {h(t) = h}; thus, those points
for which local changes in scale are performed in the same way belong to the same
fractal component. Once Fh are obtained, their fractal dimensions D(h) can be
calculated. This function, known as the singularity spectrum of the multifractal,
plays a central role in the connection of geometrical and statistical properties of
multifractals: the famous Parisi-Frisch’s formula14 express the multiscaling expo-
nents obtained in the statistical approach in terms of D(h). Hence, series can be
classified according to D(h).

The singularity spectrum of a physical multifractal signal is always bounded
from below, that is, there always exists a finite minimum singularity exponent
h∞ since physical signals cannot display divergences to infinity. The existence of
a lower bound for the singularity exponents have deep consequences for natural
multifractals, as the related fractal manifold is very informative about the signal.
We will call the fractal manifold associated to the most singular (i.e., smallest)
exponent h∞ the Most Singular Manifold (MSM) of the multifractal hierarchy, and
we will denote it by F∞ (i.e., F∞ ≡ Fh∞). The MSM corresponds to rare events
in the distribution of singularities, located at the tail of that distribution. But in
spite of being unlike events, the dynamics of the series is lead by the MSM10. In
fact, based on the statistical interpretation of the MSM16 it has been proposed
that multifractal signals with lower bounded spectra can be reconstructed from
the values of the gradient of the signal over the MSM. An explicit reconstruction
formula was derived16, that for the case of 1D series takes the following form10:

s(t) = s(0) +
∫ t

0

dτ s′(τ) (3)

Equation (3) must be understood as an integral with respect to the Hausdorff mea-
sure associated to the MSM (we assume that the MSM is a regular fractal15) of
the values of the gradient of s restricted to the MSM. Although when this expres-
sion is applied to real, discretized signal it gives a stepwise approximation to the
data, in theory more complex behaviours could be obtained from it. One of the
consequences of the existence of MSM and its relevance in terms of reconstruction
is that multifractal series are structured objects, containing points which convey
more information than others. In addition, the series can be described in a more
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simplified way since the whole set of events can be coded in terms of the MSM, very
useful for compression purposes 16.

3. Data. Performance of the reconstruction algorithm

For this work, we have made use of several series obtained from the foreign currency
exchange market for some important currencies, sampled at a daily rate starting
in January 1st, 1992 until December 31st, 1999. All the illustrations in this paper
have been done for the Euro-US Dollar exchange rate. We consider the logarithm
of the exchange rate, because in such a way the gradients approximate the relative
variation in the exchange rate, what is the econometrically relevant quantity.

As a first step, we computed the singularity exponents associated to each time
instant in the series by means of wavelet projections; see the details in10. When
defining the fractal components on real data, we should accept an experimental
quantization in the singularity determination ∆h, which express the experimental
uncertainty in the value. Previous works11,10 show that quantizations of order
∆h = 0.1 are acceptable for multifractal decomposition. For reconstruction task,
a more exigent choice is necessary in order to attain reasonable reconstructions
qualities. For the experiences in this paper, we fix a rather coarse determination
of the MSM comprising the 30% of the singular points; such a amount guarantees
good reconstruction qualities and efficient analysis of the series structure.

4. Reduced series

The MSM can be employed to generate a new type of signal, which is only concerned
with the presence of the MSM: the reduced signal. The reduced signal r(t) is
generated when the reconstruction formula is applied to a simplified version of
the derivatives: only the sign is kept. Hence, we take r′(t)|F∞ = sign(s′(t)) and we
assume that r is a multifractal reconstructible signal, so we apply Eq. (3) to retrieve
r(t). Once the reduced series is constructed, we can observe that there is a striking
similarity between the original and the reduced series. Compare Figs. 1 and 2, left:
a visual inspection of the graphs reveal that the reduced and the original series
have locally the same shape, just different on the size or amplitude of the observed
structures. This correspondence reaches further: the equivalence of multifractal
structures for both series can be theoretically granted, assuming that the values of
|s′| change smoothly over the MSM17. Nevertheless, there are points where sudden
differences are observed, and for which multifractal structures do not coincide. To
understand the nature of these transitions points and to characterize them in a
systematic way we need to introduce the concept of source.

5. Sources

Sources are introduced in order to provide a consistent theoretical background in
support of the hypothesized continuous function which seems to relate the series s
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Figure 1. Original series of the logarithms of EUR-USD currency exchange rates (+) and its

reconstruction from the MSM at 30% (x). The series is reconstructed in accumulated error, Eq. 3,

and for that reason error increases with time.

and its reduced counterpart r. We look for a function ρ(t) (that we will call the
source function) which is continuous and relates the derivatives of the original series
s and its reduced counterpart r, in the way:

s′(t) = ρ(t)r′(t) (4)

Equation (4) has a crucial importance, as it gives an explicit representation of the
original series as a combination of sources and reduced series. We can integrate
both sides of the equation to obtain a new reconstruction formula, in the way:

s(t) = s(0) +
∫ t

0

dτ ρ(τ) r′(τ) (5)

This equation is in fact a generalization of the MSM-based reconstruction formula,
Eq. (3), in which we have made explicit the separation between the continuous
and the multifractal parts. The question is now how to obtain the source function
ρ(t). If we assume that both the signal s(t) and the reduced series r(t) define
multifractal measures (denoted µs and µr) with the same singularity exponents,
Eq. (5) can be interpreted in terms of Riesz’s representation theorem18, in which
the measure µs is represented in terms of µr: µs(A) =

∫
A
dµr (τ) ρ(τ) ∀A. We
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can evaluate the integral density ρ(t) as the Radon-Nikodym derivative of µs with
respect to µr. Notice that if µs and µr have the same singularity exponents then
µs([t−∆t/2, t+∆t/2]) ∼ ∆td+h(t) ∼ µr([t−∆t/2, t+∆t/2]) and so both measures
are absolutely continuous respect to each other 18. The density ρ(t) can hence be
obtained by taking sequences of intervals of diminishing sizes,

ρ(t) = lim
∆t→0

µs([t−∆t/2, t + ∆t/2])
µr([t−∆t/2, t + ∆t/2])

(6)

The density ρ(t) is called the Radon-Nikodym derivative of µs with respect to µr

(sometimes represented by the symbol dµs

dµr
), and we can identify it with the source

field: Equation (6) yields Eq. (4) when the derivatives of s and r are continuous.
Unfortunately, a direct application of Eq. (6) over experimental data is not easy
and demands special care17. In a previous study over stock market data 17 the best
method to evaluate the source field leads to hypothetize that the sources form a
stepwise function. In this way, one relaxes our initial assumption of continuity on
ρ to piecewise continuity. The piecewise continuous model we propose here is the
simplest one, namely piecewise linearity: for each source domain A we have

s(t) = a
A
r(t) + b

A
∀t ∈ A (7)

what implies

ρ(t) = a
A

∀t ∈ A (8)

so that sources are stepwise (constant over each region; see17 for a description on
the iterative method to retrieve the source domains). There are many advantages
respect to other strategies. It gives access to more regular source function ρ by
definition (i.e., they are piecewise constant). It gives more importance to regions
than to points. The stepwise method is stable with respect to discretization. When
the MSM is calculated at different densities (that is, with different quantizations),
the associated stepwise sources have a very similar aspect, i.e., stepwise method
is stable with respect to the quality in the determination of the MSM. Moreover
piecewise constant sources grant the correspondence of multifractal structures of s

and r: indeed, µs = a
A
µr over A, so the singularity exponents coincide. In Figure 2,

right, we show the sources calculated for our example series. Finally, the quality of
the reconstructions obtained by combining the reduced series and stepwise sources
is very good, even using a small number of source domains {Ai}i=1 ,...,N . The results
are shown in Figure 3.

When the sources are described in terms of piecewise continuous functions the
series introduces some transition points (i.e., the limits of the source domains)
in which sharp changes take place. For the rest of points, data series are just a
rescaled version of their reduced counterparts. Henceforth, the frontiers of source
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Figure 2. Left: Reduced series ; Right: Stepwise sources for EUR-USD daily series (with N = 10

temporal domains)
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Figure 3. Original series of the logarithms of EUR-USD currency exchange rates (+) and its
reconstruction applying sources (x); PSNR: 28.69 dB

domains have a dynamical interpretation: they are the transition points at which
the economical system changes its behaviour. Those points are probably outside
of the multifractal paradigm, as we can identify the multifractal structures of the
original and the reduced series except for those points. Transition points in sources
can probably be interpreted as too singular points in which statistics of temporal
series deviates from multifractality, so they should be studied separately. Transi-
tion points are very relevant in order to understand changes in the dynamics of the
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system; for instance, in other contexts as for instance meteorology the presence of
transition source points have been related with the presence of convection currents,
precipitations and other effects related with strong energy exchanges 19. In our con-
text, source plateaus are very close in value and transitions have small amplitudes,
in contrast to what is observed in the study of stock market series 17. A possible
interpretation of source values and its transitions is the following. Let us consider
the constant value a

A
at each source domain A. By definition (see Eq. (4)) the

absolute values of the derivatives of the series over the MSM equal that constant.
The constant a

A
represents then the maximum expected change per unit of time

during the whole domain A. In this sense, aA gives a measure of the maximum
volatilitya over that period: the volatility σ(t0,∆t) at a given time t0 and over a
window length ∆t will be given by:

σ(t0,∆t) = a
A

σr(t0,∆t) (9)

where σr(t0,∆t) is the volatility for the reduced signal, that we will call reduced
volatility. Taking into account that at any time step the reduced series can change
at most by 1, σr(t0,∆t) < ∆t. According to our model, it follows that at each
source domain σ(t0,∆t)/∆t < a

A
, which is consistent with the interpretation of a

A

as maximum volatility per unit of time given above.
In spite of the simplicity of the reduced signal, in our model the volatility is a

complicated, random variable because the reduced volatility itself is random. The
reduced volatility depends on local variations in tendency (which depend on the
particular basis point t0 as well as on the size of the window extent ∆t), on the
Markov parameters characterizing the reduced series 10 (which in turn depend on
the particular source domain A containing t0) and in the multifractal structure
(which does not evolve but may depend on the particular series we are studying;
however this later dependency is integrated in the Markov parameters and does
not require a separate study). An interesting prediction of our model is that all
cycles and variations of volatility are also cycles and variations of reduced volatility,
as both volatilities just differ in piecewise constant scale factors. In Figure 4 we
observe that such prediction is correct over our example series. Notice that the very
similar values in the source plateaus observed for the Euro-US Dollar exchange rate
would imply that this market has a rather constant distribution of volatilities.

6. Conclusions and future work

The experimental evidence confirms that relevant econometric variables, such as
volatility, can be characterized over long periods (the source domains) by the re-
duced series, which just contains geometrical information. The results confirm the

aHere we define the volatility at a given point as the standard deviation of values of series for a
window of fixed size around that point.
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Figure 4. Volatility time series for the original data (continuous line) and the reduced counterpart

(re-scaled by a factor 0.01 to fit the graph; dashed); ∆t = 100 ticks. Notice that we can identify

the same cycles for both volatility series, in agreement with theory.

importance of the MSM, as this set characterizes completely the reduced series.
Any model for the volatility should primarily consist of a model for the reduced
series (as the one presented in 10). The sources have an important role, also. Ac-
cording to our model, volatilities must be recalculated once a transition point is
crossed: following Eq. (9), the constant relating the reduced volatility with the
actual volatility changes after each transition - as it is the source term. This fact
makes the detection of transition points crucial.

The results presented here are obtained on the basis of a descriptive analysis,
that is, the structure and the properties we have isolated are obtained by analyzing
the series a posteriori: when processing a time instant in the series, we take into
account both the past and the future times. But there is nothing in the multifractal
formalism which prevents the use of unilateral intervals to analyze local scalings as
in Eq. (2): namely:

µ([to−∆t/2, t0]) = α0∆td+h0 + O(∆td+h0) (10)

Preliminary results on this type of prospective analysis (i.e., oriented to the pre-
diction) shows that the determination of the multifractal structure is still possible,
although the experimental uncertainties increase, specially in the detection of points
in the MSM. Timely detection of the MSM have relatively important uncertainties,
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which decay fast as time passes and the point under study is further in the past of
the last accessible point.

Concerning prospective detection of source domains, a new algorithm needs to
be define, as the one presented17 is by construction strictly descriptive and the
determination of source domains is made in a global basis and not locally. This is
an important limitation of the algorithm which is not intrinsic to sources; in fact,
sources are local, as they correspond to the Radon-Nikodym derivative. New stable,
unilateral methods for the obtention of sources on experimental, discretized data
need to be implemented.
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