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Abstract

Synthetic aperture radar (SAR) is a sophisticated
technique of all-weather radar imaging capable of
producing fine detailed images from a moving platform.
When such a radar is placed on-board a satellite,
compression of the raw SAR signal is hecessary to reduce
the large amount of collected data for downlink to a
ground station within the bandwidth constraints. In this
paper we present a transform-based compression system
using Haar wavelet, the Battle-Lemarié wavelets (linear
and quadratic) and Daubechies wavelets (D-4 and D-20).
The transformed data are then quantized using a hit
allocation strategy. We take advantage from the
multiresolution analysis to use different quantizers in
each frequency band of wavelet coefficients. Since the
wavelets considered here form orthonormal bases, the
reconstruction is guaranteed in each case. Experimental
results point out advantages and drawbacks of this
approach.

Keywords: raw SAR data, compression, Haar wavelet,
Battle-Lemarié wavel ets, Daubechies wavelets.

1. INTRODUCTION

The synthetic aperture radar (SAR) image generation
process can be broken up into three basic stages, as
shown in Fig. 1. The stages are: (i) sensing of the area
target using the imaging radar, (ii) digitalization and
compression of the reflected SAR signal for downlink to
aground station, and (iii) processing of the reconstructed
SAR signa into image data. This paper focuses on
compressing the digitized reflected SAR signal for
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transmission from a satellite down to a ground station.
This digitized reflected SAR signal is known asraw SAR
data.

The most widely recognized method of raw SAR data
compression is the block adaptive quantization (BAQ)
[7]. BAQ uses a scaar quantizer controlled by the
statistics of the raw SAR data to quantize these data with
fewer bits. In order to increase the performance, BAQ
combined with other techniques such as vector
quantization and trellis-coded quantization, have been
proposed in [2].

This work is motivated by our interest in compression
algorithms for Radarsat 1l and Ill, and their
implementationsin hardware. In the following section we
present a brief introduction to SAR and the SAR signa
characteristics. Section 3 discusses the wavelet
decomposition and reconstruction agorithms.  Bit
allocation algorithms and quantization methods are
presented in Section 4. Section 5 is devoted to
experiments and results.

2. SYNTHETIC APERTURE RADAR

Synthetic aperture radar is a sophisticated remote
sensing tool that is capable of providing high resolution
images from a moving platform. In imaging radars like
SAR, the length of the radar antenna determines the
resolution in the azimuth (along-track) direction of the
resulting image, thus the longer the antenna, the finer the
resolution in this dimension. As it is prohibitively
expensive to place avery large radar antennain space, an
alternative approach is to synthesize the aperture.
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In SAR, the radar sends out many pulses very rapidly
as it travels over a particular object, and captures the
backscattered responses. The ability of the radar antenna
to receive many backscattered responses per object, as it
moves aong its flight track, alows the radar to
synthesize a very long antenna. Each echo of the
illuminated area can, therefore, be considered as a
convolution of the complex ground reflectivities where
the received signal can be modelled as

e
S= Y ae™ @
k=1

where a, is the reflectance amplitude, ¢, is the phase

delay, and the sum is over al elementary phasor
contributions, N.
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Fig. 1. Basic SAR image generation process.

In communications theory, the independence between
the a, and ¢, is assumed, and they are supposed to be

uniformly distributed [3]. Thus, according to the central
limit theorem, the received SAR signal is a continuous
random signal with Gaussian distribution.

This received SAR signal is typically digitized on
board the radar into raw SAR data for archiving or
transmission. As a high resolution radar can produce
hundreds of megabits of data per second, compression of
these data is mandatory for transmission from space to a
processing station in the available downlink bandwidth.

Since it can be shown that adjacent samples in range
and azimuth have low correlation [7], the received signal
can be modeled as a complex random process, where its
real and imaginary parts are quasi-independent with the
same distribution which is a zero mean Gaussian with
identical variance. The signal’s phase has a uniform

distribution while the magnitude is Rayleigh. Another
important characteristic which is fundamental in
determining the type of compression to be used, is the
low variation of the signal power.

The raw SAR signal poses many compression
challenges due to its noise like characteristics and high
entropy [4]. The raw SAR signa is often compared to
noise because signals added incoherently, with random
phase, sum in amplitude like a random walk. This makes
conventional image compression techniques ill suited to
SAR applications. An analysis of raw SAR signal data
done by Curlander and McDonough [4] on a NASA DC-
8 airborne SAR system shows that the zero-order entropy
is 6 to 7 bits per sample. Therefore, if 8-bit quantization
is used in the digitalization of the received SAR signal,
the maximum achievable compression factor is 1.3. Then
alossy compression is necessary.

3. WAVELET TRANSFORM

We will represent a particular two-dimensional signal
by I(xy) a every point (x,y) in the screen. For
normalization convenience, we will work over the global
contrast C(x,y) = I(x,y)—1 where | isthe average over
the screen. Thisis very convenient as wavel ets have zero-
mean for mathematical reasons [5] and we want to
express C as acombination of wavelets.

We consider here a separable two-dimensional dyadic
wavelet expansion. Thus, for a given (one-dimensional)
multiresolution analysis (MRA) determined by a scaling
function ¢ and the associated wavelet v, the
corresponding 2-dimensional MRA is determined by the
scaling function ® and the three mother wavelets

90wl w? given by [11]

Q% y) = e(X)0(y)

Yo% y) = e(0w(y)

1 2
YI(Xy) = v(X)o(y)
YAxy) = wOw(y)

The horizontal, vertical and diagonal details, at
resolution j are obtained as the inner product of the
sign C and a shifted and dilated version of

‘I‘i,i = 0, 1, 2 respectively, i.e.,

i i .
. = . = 3
% K m (C,‘{’J’k,m>,for| 0,12 ©)
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and the approximation of the signal, at resolution j, is
given by

Bj’ km= (CP (4)
where
@ oy = 20@x-k dy-m) ©
and
\P},k, rn(x,y) = 2j‘Pi(2jx—k, 2jy—m) (6)

The greatest scale is fixed as the unity 1 = 2° (i.e., the
corresponding approximation and details are a single

point) and the jth scale is then 27, Assuming that the
scaleis of the same order asthe dispersion of the wavelet,

it is possible to distinguish up to 272 different blocks. If
the smallest scale is denoted by N (which corresponds to
the original signal), then the reconstruction of C isgiven
by [12], [6]

N

con=3 Y Yoy

j=o i

k,m:O...(Zj—l) ()

In this decomposition, where we have neglected the
coarsest approximation, the signal is represented in
successive levels of details, from the coarsest to the finest
details.

Wavelet coefficients-based MRA decomposition can
be computed with quadrature mirror filters, consisting of
alow-passfilter L and a high-pass filter H [9], [13], [14].
The implementation is as follows: the rows of the input
block C arefirst filtered with L then with H. The filtered
output is then down-sampled by 2. Next each column of
the row filtered block is again low-pass and high-pass
filtered and down-sampled by 2. This is the first level
decomposition. We apply the same process to the LL-
output recursively to obtain the second level
decomposition, and the process continues up to the
desired resolution.

4.BIT ALLOCATION AND
QUANTIZATION

4.1 Bit Allocation

In the wavelet decomposition of a signal, each
coefficient may be quantized using a different number of

bits to achieve a minimum distortion of the reconstructed
signal.
Let Wi(b;) be the distortion incurred in quantizing the

ith wavelet coefficient (i = 1, ..., K) with b; bits. The bit
alocation problem is to find b, to minimize the overall
distortion

K
D(b) = 3" Wi(b)) (®)
i=1
subject to the constraint that

3 bi<B 9)

where B isthe number of available bits.

Assuming a high resolution quantization and that the
distortion measure is the error variance, then the number
of bits assigned to each coefficient is given by

(10)

where o7 isthe estimated variance of the ith coefficient.

4.2 Quantization

The standard deviation of each coefficient is estimated
by the average signal power

(11)

where N isthe block size of the coefficient. The standard
deviation is then used to determine the optimum
quantizer by finding the decision boundaries {b;} and the

reconstruction levels {y;} (i = 1,...,.L where L isagiven

number of levels) that minimize the mean squared
guantization error. They are the solutions of the Max-
Lloyd equations [10]
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f(X) = L o2 (14)
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These parameters are provided in many books for various
valuesof L (e.g. [10]).

5. EXPERIMENTSAND RESULTS

5.1 Wavelets Bases

To conduct our experiment, we have used five
orthonormal wavelet bases, namely Haar wavelet (HW),
the linear and quadratic splines from Battle-Lemarié
wavelets (BLL and BLQ) which are constructed by
orthogonalizing the B-spline functions, and two
Daubechies wavelets (D-4 and D-20). The corresponding
mother wavelets in one-dimension and their spectra are
plotted in Fig 2.

As we can see, the Haar wavelet provides better
localization in the spatial domain compared to the Battle-
Lemarié ones. However, the opposite is true in the
frequency domain. A better trade-off between spatial and
spectral localization is provided by Daubechies wavelets.
Other important properties like symmetry, number of
vanishing moments and regularity can be fruitful for data
compression. It was established that [8]:

(a) If the wavelet has enough vanishing moments, then
the wavelet coefficients are small at fine scales and can
be neglected in a compression application. Haar wavelet
has only one vanishing moment, BLL and D-4 have two,
BLQ has three while D-20 has ten vanishing moments.

(b) To minimize the number of high amplitude
coefficients (which improves the compression) we must
reduce the support size of the mother wavelet.

Daubechies wavelets have a minimum size support for a
given number of vanishing moments.

(c) The regularity of the mother wavelets influences
the quantization distortion of the coefficients. Regularity
increases with the number of vanishing moments. Haar
wavelet is discontinuous, D-4 is Lipshitz 0.55, BLL is
continuous, BLQ and D-20 are continuously
differentiable.

@)

() /\AA
Ll

(d)

o

4 3 2 1 o 1 2 3 4 s

Fig. 2. The mother wavelets and their spectra. (a) HW,
(b) D-4, (c) D-20, (d) BLL and (e) BLQ.

To test the performance of the five kinds of wavelets, a
set of the ERS-2 mission has been considered. This data
frame, of 26624 x 11264 samples in azimuth and range
directions, was provided by the Alaska SAR Facility
(ASF). These raw data were originally quantized with 8
bits. For the evaluation, we consider the signal-to-noise
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ratio (SNR) which is the ratio of the origina raw data
variance to the variance of the error between the original
and reconstructed data. This error is the same as the
guantization error as long as we consider orthogonal
transforms.

5.2 Experimental Results

Figure 3 presents two parts of the original image
compared to the corresponding reconstructed ones (for a
guantization with 2 bits) obtained after processing the
raw data. These two parts were chosen because of their
representative features (mountains, river, lake, airport).
The error images amplified by 37% shown in Fig. 4
indicate that the reconstructions are of high quality,
without any recognizable residual pattern. Notice also
that there is no significant difference with respect to the
kind of wavelets.

Table 1 presents the SNR (in dB) for a quantization
with 1, 2, or 3 bits per sample. The five wavelets
performed similarly. This is due to the characteristics of
the raw SAR signal which are similar to noise. Further
improvement can be obtained by searching for an optimal
wavelet able to localize better the important objects.

Table 1: SNR in dB for the five wavelets using

1, 2 or 3 hits

Haar BLL BLQ D-4 D-20
1 4.35 4.35 4.35 4.36 4.35
bps
2 8.14 8.01 8.00 8.01 8.00
bps
3 1455 | 1452 | 1449 | 1453 | 1450
bps

6. CONCLUSIONS

We have presented in this study a compression of the
raw SAR signal using five kinds of wavelets. Our goal to
study wavelet-based techniques and their effect on SAR
signal, was achieved. The quality reconstruction is very
good; however, further improvement of the SNR has to
be made. Dueto noiselike characteristics of theraw SAR
signal, the standard wavelets are not very efficient in
compacting energy on the transform domain. Hence
research has to be oriented to wavelet optimality
combined with an efficient quantization strategy.
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Fig. 3. (a) Origina image and reconstructed images
using (b) HW, (c) BLL, (d) BLQ, (e) D4 and (f) D20.
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